题意:
给出N个硬币(N<=400),开始均反面朝上。每次挑出其中一个抛,连续抛K次(K<=400),求正面朝上的最大数学期望。
题解:
本来打算分类讨论的,把N>=K的情况的数学表达式推出来了,在退N<K的时候发现了规律,并且适用于N>=K的情况。
0个正面向上的情况:总为1
n-1个正面向上的情况:可以从上一次的n个、n-1个、n-2个这三种情况推得,则答案为上一次这三种情况的总和。
其余情况:只能从上一次的i个、i-1个推得。
代码(Java):
import java.math.BigDecimal; import java.math.BigInteger; import java.util.*; public class Main { static Scanner cin = new Scanner(System.in); public static void main(String[] args) { BigDecimal[] a= new BigDecimal[405]; BigDecimal[] b= new BigDecimal[405]; int tn,m; tn=cin.nextInt(); m=cin.nextInt(); if(tn==1) { System.out.println("0.5"); } else { int n=tn+1; for(int i=0;i<n-1;i++) { a[i]=BigDecimal.valueOf(0); } a[n-1]=BigDecimal.valueOf(1); for(int i=1;i<=m;i++) { for(int j=0;j<n;j++) { if(j==n-1) b[j]=BigDecimal.valueOf(1); else if(j==1) b[j]=a[j-1].add(a[j]).add(a[j+1]); else b[j]=a[j].add(a[j+1]); } for(int j=0; j<n; j++) { a[j]=b[j]; } } BigDecimal ans=BigDecimal.valueOf(0); for(int i=0;i<n;i++) { ans=ans.add(a[i].multiply(BigDecimal.valueOf(n-i-1))); } BigDecimal ll=BigDecimal.valueOf(1); for(int i=0;i<m;i++) { ll=ll.multiply(BigDecimal.valueOf(2)); } //System.out.println(ans+" "+ll); System.out.println(ans.divide(ll)); } } }