POJ 1284 (原根)

题意:给一个奇素数,求它原根的数目。

定理:如果p有原根,则他有phi(phi(p))个原根,p为素数是,phi(p) = p-1,原根数量就为phi(p-1);

下面给出原根的求法:

对于数m,先求ϕ(m) 的素幂分解式,即

                φ(m) = p1^e1*p2^e2*……*pk^ek;

然后枚举g,若g满足g^(φ(m)/pi )!= 1 (mod m) ,i = 1,2,3……,k;

则g为m的一个原根

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>

using namespace std;

int euler_phi(int n)
{
    int m = sqrt(n+0.5);
    int ans = n;
    for(int i = 2; i <= m; i++)
    if(n%i==0)
    {
        ans = ans/i*(i-1);
        while(n%i==0)
            n /= i;
    }

    if(n>1)
        ans = ans/n*(n-1);
    return ans;
}

int main()
{
    int p;
    while(cin>>p)
    {
        int ans = euler_phi(p-1);
        cout<<ans<<endl;
    }
    return 0;
}



阅读更多
个人分类: 数论
上一篇POJ 1150 (数论)
下一篇Lightoj 1124 (容斥+lucas)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭