OpenCV-Python——环境配置及图像基本操作

请添加图片描述
一、环境配置

1、在虚拟环境中安装以下库:

opencv-python==3.4.1.15

opencv-contrib-python==3.4.1.15

建议安装3.4.1的版本,3.4.2之后的版本做了专利保护,有的功能不能实现。

虚拟环境的安装以及安装库的问题见PyQt5专栏中的第一节。

2、安装jupyter notebook

pip install jupyter——安装

jupyter notebook——启动

二、图像的基本操作

1、图像的操作

  • cv2.IMREAD_COLOR:彩色图像
  • cv2.IMREAD_GRAYSCALE:灰度图像
 1 # \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*读取图片\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*开始
 2 \# 导入库
 3 import cv2
 4 import numpy as np 5 # import matplotlib.pyplot as plt 6 
 7 \# 读入图片
 8 # img = cv2.imread('cat.jpg')
 9 img = cv2.imread('cat.jpg',cv2.IMREAD\_GRAYSCALE) # 读入灰度图像
10 
11 \# 显示图片
12 # cv2.imshow('image',img)
13 # cv2.waitKey(10000)                          # 显示10秒
14 \# cv2.destroyAllWindows()
15 
16 \# 定义展示图片函数
17 def cv\_show(name,img):
18 cv2.imshow(name,img)
19     cv2.waitKey(0)
20 cv2.destroyAllWindows()
21 
22 cv\_show('image',img)                          # 调用函数cv\_show
23 
24 \# 打印一些参数
25 print(img)                                    # 打印图片
26 print(img.shape)                              # 打印图像的尺寸
27 print(type(img))                              # 打印的图像的格式
28 print(np.size(img))                           # 打印图片的大小
29 # \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*读取图片\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*结束

2、视频的操作

  • cv2.VideoCapture可以捕获摄像头,用数字来控制不同的设备,例如0,1。
  • 如果是视频文件,直接指定好路径即可
 1 # \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*读取视频\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*开始
 2 \# 导入库
 3 import cv2
 4 import numpy as np 5 # import matplotlib.pyplot as plt 6 
 7 vc = cv2.VideoCapture('test.mp4')               # 读取视频
 8 
 9 \# 检查是否打开正确
10 if vc.isOpened():
11     open, frame = vc.read()
12 else:
13     open = False
14 
15 while open:
16     ret, frame = vc.read()
17     if frame is None:
18         break
19     if ret == True:
20         gray = cv2.cvtColor(frame,  cv2.COLOR\_BGR2GRAY)
21         cv2.imshow('result', gray)
22         if cv2.waitKey(10) & 0xFF == 27: # 每一帧的等待时间以及关闭
23             break
24 vc.release()
25 cv2.destroyAllWindows()
26 
27 # \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*读取视频\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*结束

3、截取部分图像+颜色通道获取

 1 # \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*截取部分图像+颜色通道获取\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*开始
 2 \# 导入库
 3 import cv2
 4 # import numpy as np 5 # import matplotlib.pyplot as plt 6 
 7 img=cv2.imread('cat.jpg')
 8 cat=img\[0:200,0:200\]                         # 截取部分图像数据
 9 
10 \# 定义展示图片函数
11 def cv\_show(name,img):
12 cv2.imshow(name,img)
13     cv2.waitKey(0)
14 cv2.destroyAllWindows()
15 
16 # cv\_show('cat',cat)
17 
18 b,g,r=cv2.split(img)                        # 获取图像的r,b,g通道数值
19 print(b)
20 print(b.shape)
21 
22 img=cv2.merge((b,g,r))                      # r,g,b通道合成
23 print(img.shape)
24 
25 \# 只保留R
26 cur\_img = img.copy()
27 cur\_img\[:,:,0\] = 0                          # 除R通道其余都设置为0
28 cur\_img\[:,:,1\] = 0
29 cv\_show('R',cur\_img)                        # 只保留R通道
30 
31 \# 只保留G
32 cur\_img = img.copy()
33 cur\_img\[:,:,0\] = 0
34 cur\_img\[:,:,2\] = 0
35 cv\_show('G',cur\_img)                        # 只保留G通道
36 
37 \# 只保留B
38 cur\_img = img.copy()
39 cur\_img\[:,:,1\] = 0
40 cur\_img\[:,:,2\] = 0
41 cv\_show('B',cur\_img)                        # 只保留B通道
42 # \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*截取部分图像+颜色通道获取\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*结束

4、边界填充

  • BORDER_REPLICATE:复制法,也就是复制最边缘像素。
  • BORDER_REFLECT:反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcba|abcdefgh|hgfedcb
  • BORDER_REFLECT_101:反射法,也就是以最边缘像素为轴,对称,gfedcb|abcdefgh|gfedcba
  • BORDER_WRAP:外包装法cdefgh|abcdefgh|abcdefg
  • BORDER_CONSTANT:常量法,常数值填充。
 1 # \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*边界填充\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*开始
 2 import cv2 3 import matplotlib.pyplot as plt 4 
 5 img = cv2.imread('cat.jpg')
 6 
 7 # 设置参数
 8 top\_size,bottom\_size,left\_size,right\_size = (50,50,50,50)
 9 
10 
11 replicate = cv2.copyMakeBorder(img, top\_size, bottom\_size, left\_size, right\_size, borderType=cv2.BORDER\_REPLICATE)
12 reflect = cv2.copyMakeBorder(img, top\_size, bottom\_size, left\_size, right\_size,cv2.BORDER\_REFLECT)
13 reflect101 = cv2.copyMakeBorder(img, top\_size, bottom\_size, left\_size, right\_size, cv2.BORDER\_REFLECT\_101)
14 wrap = cv2.copyMakeBorder(img, top\_size, bottom\_size, left\_size, right\_size, cv2.BORDER\_WRAP)
15 constant = cv2.copyMakeBorder(img, top\_size, bottom\_size, left\_size, right\_size,cv2.BORDER\_CONSTANT, value=0)
16 
17 plt.subplot(231), plt.imshow(img, 'gray'), plt.title('ORIGINAL')
18 plt.subplot(232), plt.imshow(replicate, 'gray'), plt.title('REPLICATE')
19 plt.subplot(233), plt.imshow(reflect, 'gray'), plt.title('REFLECT')
20 plt.subplot(234), plt.imshow(reflect101, 'gray'), plt.title('REFLECT\_101')
21 plt.subplot(235), plt.imshow(wrap, 'gray'), plt.title('WRAP')
22 plt.subplot(236), plt.imshow(constant, 'gray'), plt.title('CONSTANT')
23 
24 plt.show()
25 # \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*边界填充\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*结束

5、数值计算

 1 # \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*数值计算\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*开始
 2 import cv2 3 
 4 img\_cat=cv2.imread('cat.jpg')
 5 
 6 print(img\_cat\[:5,:,0\])                # 原图   打印前五行
 7 
 8 img\_cat2 = img\_cat+10
 9 print(img\_cat2\[:5,:,0\])               # 处理后 打印前五行
10 
11 # 直接相加==%256  求余数
12 print((img\_cat+img\_cat2)\[:5,:,0\])     # 相加后 打印前五行
13 
14 # add函数
15 print(cv2.add(img\_cat,img\_cat2)\[:5,:,0\])     # add后 打印前五行
16 # \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*数值计算\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*结束

6、图像融合

R = aX1 + aX2 + b

 1 # \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*图像融合\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*开始
 2 import cv2 3 
 4 img\_cat=cv2.imread('cat.jpg')
 5 img\_dog=cv2.imread('dog.jpg')
 6 
 7 # 查看当前图像的各自参数
 8 print(img\_cat.shape)
 9 print(img\_dog.shape)
10 
11 # 修改图像的大小  保持一致
12 img\_dog = cv2.resize(img\_dog,(500,414))
13 print(img\_dog.shape)
14 
15 # 加权融合
16 res = cv2.addWeighted(img\_cat, 0.4, img\_dog, 0.6, 0)
17 print(res.shape)
18 
19 # 显示图像
20 # 定义展示图片函数
21 def cv\_show(name,img):
22 cv2.imshow(name,img)
23 cv2.waitKey(0)
24 cv2.destroyAllWindows()
25 
26 cv\_show('image',res)
27 
28 # 比例修改图像大小
29 img\_cat = cv2.resize(img\_cat,(0,0),fx=3,fy=1)
30 cv\_show('cat\_image',img\_cat)
31 # \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*图像融合\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*结束

7、图像灰度转换

  cv2.COLOR\_BGR2GRAY
1 # \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*图像的灰度转换\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*开始
2 import cv2                                            # opencv读取的格式是BGR
3 # import numpy as np
4 # import matplotlib.pyplot as plt                     # Matplotlib是RGB
5 
6 img=cv2.imread('cat.jpg')
7 img\_gray = cv2.cvtColor(img,cv2.COLOR\_BGR2GRAY)       # 灰度转换
8 print(img\_gray.shape)
9 # \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*图像的灰度转换\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*结束

本文仅供练习,切勿商用

由于文章篇幅有限,文档资料内容较多,需要这些文档的朋友,可以加小助手微信免费获取,【保证100%免费】,中国人不骗中国人。
请添加图片描述
今天分享就到这里啦,感谢大家支持。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值