顺序表应用7:最大子段和之分治递归法

顺序表应用7:最大子段和之分治递归法

Time Limit: 10 ms Memory Limit: 400 KiB

Problem Description

给定n(1<=n<=50000)个整数(可能为负数)组成的序列a[1],a[2],a[3],…,a[n],求该序列如a[i]+a[i+1]+…+a[j]的子段和的最大值。当所给的整数均为负数时定义子段和为0,依此定义,所求的最优值为: Max{0,a[i]+a[i+1]+…+a[j]},1<=i<=j<=n。 例如,当(a[1],a[2],a[3],a[4],a[5],a[6])=(-2,11,-4,13,-5,-2)时,最大子段和为20。

注意:本题目要求用分治递归法求解,除了需要输出最大子段和的值之外,还需要输出求得该结果所需的递归调用总次数。

递归调用总次数的获得,可以参考以下求菲波那切数列的代码段中全局变量count的用法:

#include
 int count=0;
 int main()
 {
     int n,m;
     int fib(int n);
     scanf("%d",&n);
     m=fib(n);
     printf("%d %d\n",m,count);
     return 0;
 }
 int fib(int n)
 {
     int s;
     count++;
     if((n==1)||(n==0)) return 1;
     else s=fib(n-1)+fib(n-2);
     return s;
 }

Input

第一行输入整数n(1<=n<=50000),表示整数序列中的数据元素个数;

第二行依次输入n个整数,对应顺序表中存放的每个数据元素值。

Output

一行输出两个整数,之间以空格间隔输出:

第一个整数为所求的最大子段和;

第二个整数为用分治递归法求解最大子段和时,递归函数被调用的总次数。

Sample Input

6
-2 11 -4 13 -5 -2

Sample Output

20 11


#include<stdio.h>
#include<algorithm>
#include<iostream>
#include<string.h>
using namespace std;
int a[50005];
int sum,z;
int zhao(int l,int r)
{
    int ss,s1,s2,i,mid,lsum,rsum;
    sum=0;
    z++;
    if(l==r)
    {
        if(a[l]>=0) sum=a[l];
        else sum=0;
    }
    else
    {
        mid=(l+r)/2;
        lsum=zhao(l,mid);
        rsum=zhao(mid+1,r);
        s1=ss=0;
        for(i=mid;i>=l;i--)
        {
            ss+=a[i];
            if(ss>s1) s1=ss;
        }
        s2=ss=0;
        for(i=mid+1;i<=r;i++)
        {
            ss+=a[i];
            if(ss>s2) s2=ss;
        }
        sum=s1+s2;
        sum=max(sum,lsum);
        sum=max(sum,rsum);
    }
    return sum;
}
int main()
{
    int n,i;
    scanf("%d",&n);
    for(i=1;i<=n;i++)
        scanf("%d",&a[i]);
    z=0;
    int f=zhao(1,n);
    printf("%d %d\n",f,z);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值