蓝桥杯试题 网络寻路 (构图+深搜)

本文介绍了一种基于链表建图的方法来解决图论中的路径计数问题,具体为在一个给定的网络中找到所有恰好经过两次转发到达目标节点的路径数量。文中详细解释了如何构造链表以及通过深度优先搜索算法进行路径计数。
问题描述

X 国的一个网络使用若干条线路连接若干个节点。节点间的通信是双向的。某重要数据包,为了安全起见,必须恰好被转发两次到达目的地。该包可能在任意一个节点产生,我们需要知道该网络中一共有多少种不同的转发路径。

源地址和目标地址可以相同,但中间节点必须不同。

如下图所示的网络。

1 -> 2 -> 3 -> 1 是允许的

1 -> 2 -> 1 -> 2 或者 1 -> 2 -> 3 -> 2 都是非法的。

输入格式

输入数据的第一行为两个整数N M,分别表示节点个数和连接线路的条数(1<=N<=10000; 0<=M<=100000)。

接下去有M行,每行为两个整数 u 和 v,表示节点u 和 v 联通(1<=u,v<=N , u!=v)。

输入数据保证任意两点最多只有一条边连接,并且没有自己连自己的边,即不存在重边和自环。

输出格式
输出一个整数,表示满足要求的路径条数。
样例输入1
3 3
1 2
2 3
1 3
样例输出1
6
样例输入2
4 4
1 2
2 3
3 1
1 4
样例输出2
10

分析 :  题目要求求 一个图有多少条路径, 每条路径可以走三次, 即 a->b->c->d ;  这种情况就是四个地点都不同;
也可以最后走回起点,即 a->b->c->a ; 这种情况就是3个地点不同 ;
我们用链表建图; n个点, 每个点做头结点,把与它相连的点接到它后面 ;这样就相当于有n条链表 ;
如题给的图 : 构完图后 有5条链表 ;
1->2->3 
2->1->3->4->5
3->1->2->5
5->2->3
4->2
头结点后面的都是跟头结点相连的点 ;
所以n个点,所有符合要求的路径就在这以每个不同点开头的路径上 ; 即 以点1为起点的所以情况+以2为起点的所有情况+.......
以5为起点的所有情况 ;所以我们对每个头结点为起点,往下深搜即可 ;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值