问题描述
X 国的一个网络使用若干条线路连接若干个节点。节点间的通信是双向的。某重要数据包,为了安全起见,必须恰好被转发两次到达目的地。该包可能在任意一个节点产生,我们需要知道该网络中一共有多少种不同的转发路径。
源地址和目标地址可以相同,但中间节点必须不同。
如下图所示的网络。
1 -> 2 -> 3 -> 1 是允许的
1 -> 2 -> 1 -> 2 或者 1 -> 2 -> 3 -> 2 都是非法的。
输入格式
输入数据的第一行为两个整数N M,分别表示节点个数和连接线路的条数(1<=N<=10000; 0<=M<=100000)。
接下去有M行,每行为两个整数 u 和 v,表示节点u 和 v 联通(1<=u,v<=N , u!=v)。
输入数据保证任意两点最多只有一条边连接,并且没有自己连自己的边,即不存在重边和自环。
输出格式
输出一个整数,表示满足要求的路径条数。
样例输入1
3 3
1 2
2 3
1 3
1 2
2 3
1 3
样例输出1
6
样例输入2
4 4
1 2
2 3
3 1
1 4
1 2
2 3
3 1
1 4
样例输出2
10
分析 : 题目要求求 一个图有多少条路径, 每条路径可以走三次, 即 a->b->c->d ; 这种情况就是四个地点都不同;
也可以最后走回起点,即 a->b->c->a ; 这种情况就是3个地点不同 ;
我们用链表建图; n个点, 每个点做头结点,把与它相连的点接到它后面 ;这样就相当于有n条链表 ;
如题给的图 : 构完图后 有5条链表 ;
1->2->3
2->1->3->4->5
3->1->2->5
5->2->3
4->2
头结点后面的都是跟头结点相连的点 ;
所以n个点,所有符合要求的路径就在这以每个不同点开头的路径上 ; 即 以点1为起点的所以情况+以2为起点的所有情况+.......
以5为起点的所有情况 ;所以我们对每个头结点为起点,往下深搜即可 ;