牛客网AI面试题目

第一轮

  1. 静态库和动态库如何制作及使用,区别是什么
    https://blog.csdn.net/qq_38526623/article/details/110928986
    制作与使用:
    静态库:
    gcc获得.o文件 ->将.o文件打包,使用ar工具(archive)->编译和链接
    动态库:
    gcc得到.o文件,得到和位置无关的代码->gcc得到动态库->编译和链接
    区别:
    ● 静态库是在程序链接阶段被复制到程序中,动态库是在程序运行时被加载到内存中被调用。
    ● 静态库加载速度快,可移植性高,但是比较消耗系统资源,更新部署发布比较麻烦。
    ● 动态库加载速度慢,移植需提供动态库。进程间资源共享,更新、部署、发布比较简单。
  2. 说一说HashMap的实现原理
    在jdk1.7之前HashMap是基于数组和链表实现的,而且采用头插法。
    而jdk1.8 之后在解决哈希冲突时有了较大的变化,当链表长度大于阈值(默认为 8)(将链表转换成红黑树前会判断,如果当前数组的长度小于 64,那么会选择先进行数组扩容,而不是转换为红黑树)时,将链表转化为红黑树,以减少搜索时间。采用尾插法。
    HashMap默认的初始化大小为 16。当HashMap中的元素个数之和大于负载因子*当前容量的时候就要进行扩充,容量变为原来的 2 倍。(这里注意不是数组中的个数,而且数组中和链/树中的所有元素个数之和!)
  3. Serializable接口为什么需要定义serialVersionUID常量
    serialVersionUID常量用于标明当前Serializable类的版本,以验证加载的类和序列化对象是否兼容。
    在进行序列化时会将当前类的serialVersionUID写入到字节序列中,在反序列化时会将当前字节流中的serialVersionUID同本地对象中的serialVersionUID进行对比,如果相同则继续序列化,如果不同则失败报错。
    serialVersionUID常量值默认为1L。
  4. 说一说zset类型的底层数据结构
    zset底层的存储结构包括ziplist或skiplist,在同时满足有序集合保存的元素数量小于128个和有序集合保存的所有元素的长度小于64字节的时候使用ziplist,其他时候使用skiplist。
    当ziplist作为zset的底层存储结构时候,每个集合元素使用两个紧挨在一起的压缩列表节点来保存,第一个节点保存元素的成员,第二个元素保存元素的分值。
    当skiplist作为zset的底层存储结构的时候,使用skiplist按序保存元素及分值,使用dict来保存元素和分值的映射关系。
  5. 给你一个大小为 n 的字符串数组 strs ,其中包含n个字符串 , 编写一个函数来查找字符串数组中的最长公共前缀,返回这个公共前缀。
    在这里插入图片描述
恒生电子ai面试问题: 牛客网是一个针对程序员求职的在线平台,主要提供岗位介绍、刷题练习、面试经验等资源。对于恒生电子ai面试问题,以下是我给出的简要回答: 1. 请简单介绍一下恒生电子的ai部门以及您所申请的岗位。 恒生电子的ai部门致力于开发和应用人工智能和机器学习技术,为公司的业务提供智能化的解决方案。我所申请的岗位是XXX,主要负责XXX。 2. 请介绍你对人工智能的理解和研究方向。 人工智能是一门探索模拟人类智能思维与行为的科学与工程学科,主要关注机器如何实现类似于人类的智能。我的研究方向主要包括XXX,我对XXX方面的研究充满热情并具备一定的经验。 3. 请介绍一项你在机器学习或深度学习领域的项经历。 我曾参与一个基于深度学习的图片分类项。我们使用了卷积神经网络(CNN)和数据增强技术,对大量图片数据进行训练。通过调优网络结构和参数,我们取得了较好的分类效果,并成功将该模型应用于实际场景,取得了一定的成果。 4. 请谈谈你对神经网络的了解。 神经网络是一种由多个神经元组成的计算模型,通过模拟神经元之间的连接和传递信号实现模式识别和学习。我了解基本的神经网络结构,如前馈神经网络、循环神经网络和卷积神经网络,并了解它们在不同领域的应用。 以上回答是基于我的个人经验和对恒生电子ai面试问题的理解,请根据实际情况进行参考和修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我想去拉萨。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值