首先吐槽真题了,真的是,厚厚的一本里有几题能做QAQ
看完书觉着有点乱,决定写博客理理头绪
引言
1,误差的分类:截断误差,舍入误差,模型误差,观测误差。
数值分析中主要对前两种进行研究;
2,有效数字:规格化【0.aaaa*10^m】–计算比较误差【1/2*10^(m-l)】–计算得l,即为该仅近似值有l位有效数字
比较时注意与0.5的比较!
插值函数
1,拉格朗日插值
【公式的计算,编程,拉格朗日余项的证明】
关于证明:
注意几个特殊形式式子的构造,罗尔定理的使用。
2,牛顿插值
【注意与牛顿法的区分,零阶差商即为函数值本身】
求差商表后,取对角线上的值构造函数
3,直线拟合最小二乘法
准则:残差平方和最小
注意公式中所求a,b分别代表的意义
4,分段插值
数值积分
1,机械求积公式
2,关于代数精度,若求积公式对小于等于m次的多项式均准确,对与m+1次的不准确,则称其具有m次代数精度【采用1,x,x^2,x^3…验证】
插值型求积公式至少具有n次代数精度
3,梯形公式,辛普生公式–复化梯形,复化辛普生
梯形公式的积分余项公式
4,龙贝格算法
5,高斯公式
【高斯点、高斯公式的定义,高斯点基本定理的证明,勒让德公式求高斯点】
常微分方程的差分方法
1,显式欧拉格式【一阶,收敛条件稳定】,隐式欧拉格式【一阶,收敛且稳定】,两步欧拉格式【二阶】,改进欧拉
2,局部截断误差
3,四阶龙格库塔【提高精度】
4,方程组与高阶方程【注意四阶龙格库塔的使用,交替求解】
方程的迭代法
1,压缩映像原理的证明【封闭性,压缩性】
运用微分中值定理
2,迭代过程局部收敛性的证明
取极小的一段区间进行讨论,结合定理1得出结论
3,关于收敛速度的证明
【平方收敛的证明运用泰勒展开,注意c!=0】
4,牛顿法【牛顿下山,下山因子【0,1】】
5,弦截法,快速弦截法【用差商代替导数】
线性方程组的迭代法
1,雅可比,高斯赛德尔,松弛法,超松弛法SOR
注意松弛因子的取值范围,【0,1】【0,2】
2,行范数,列范数
3,迭代收敛的充分条件:任意范数小于等于1;对角占优阵
线性方程组的直接法
高斯消去,列选主元