CSP模板

基础

1. 悬线法
int le[1010][1010],ri[1010][1010],up[1010][1010];
for(register int i=1;i<=n;i++){
	for(register int j=1;j<=m;j++){
		up[i][j]=1;
		le[i][j]=ri[i][j]=j;
	}
}
for(register int i=1;i<=n;i++){
	for(register int j=2;j<=m;j++){
		if(inv[i][j]&&inv[i][j-1]){
			le[i][j]=le[i][j-1]+1;
		} 
	}
}
for(register int i=1;i<=n;i++){
	for(register int j=m-1;j>=1;j--){
		if(inv[i][j]&&inv[i][j+1]){
			ri[i][j]=ri[i][j+1]+1;
		}
	}
}
int ans=0;
for(register int i=1;i<=n;i++){
	for(register int j=1;j<=m;j++){
		if(i>1&&inv[i][j]&&inv[i-1][j]){
			up[i][j]=max(up[i-1][j]+1,up[i][j]);
			le[i][j]=max(le[i][j],le[i-1][j]);
			ri[i][j]=min(ri[i][j],ri[i-1][j]);
		}
		ans=max(ans,(ri[i][j]-le[i][j]+1)*up[i][j]);
	}
}

2.有向无环图的必经点与必经边
正反边建图,拓扑DP;

对于每一条边x->y,若fs[x]*ft[y]==fs[ed],则该边为必经边。

对于每一个点,若fs[x]*ft[x]==fs[ed],则该点为必经点
3. 龟速乘
a. O(log(n))
inline ll mul(ll a,ll b,ll mod){
	ll ans=0;
	for(;b;b>>=1){
		if(b&1) ans=(ans+b)%=mod;
		b=(b+b)%mod;
	}
	return ans;
}
b. O(1)
inline ll mul(ll x,ll y,ll mod){
    return (x*y-(ll)((long double)x/mod*y)*mod+mod)%mod;     
}
4.快速幂
inline ll power(ll a,ll b,ll mod){
	ll ans=1%mod;
	for(;b;b>>=1){
		if(b&1) ans=ans*a%mod;
		a=a*a%mod;
	}
	return ans;
}
5.整数二分
while(l<=r){
	int mid=(l+r)>>1;
	if(check(mid)) {
		l=mid+1;
		ans=mid;
	}
	else {
		r=mid-1;
	}
}
6.实数二分
for(register int i=1;i<=100;i++){
	int mid=(l+r)/2;
	if(check(mid)){
		l=mid;
	}
	else {
		r=mid;
	}
}
writeln(l);
7.三分(以有唯一极大值为例)
while(l+eps<r){
	double midl=l+(r-l)/3;
	double midr=r-(r-l)/3;
	if(f(midl)>=f(midr)){
		r=midr;
	}
	else {
		l=midl;
	}
}
8.离散
inline void lisan(){
	sort(a+1,a+n+1);
	for(register int i=1;i<=n;i++){
		if(i==1||a[i]!=a[i-1]){
			b[++tot]=a[i];
		}
	}
}
inline int query(int x){
	return lower_bound(b+1,b+tot+1,x)-b;
}
9.ST表
inline void pre(){
	for(register int i=1;i<=n;i++) f[i][0]=val[i];
	int t=(int)(log(n)/log(2));
	for(register int j=1;j<=t;j++){
		for(register int i=1;i+(1<<j)-1<=n;i++){
			f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
		}
	}
}
inline int query(int l,int r){
	int k=(int)(log(r-l+1)/log(2));
	return max(f[l][k],f[r-(1<<k)+1][k]);
}
10.归并排序及逆序对
inline void merge(int l,int r){
	if(l==r) return;
	int mid=(l+r)>>1;
	merge(l,mid);merge(mid+1,r);
	int i=l,j=mid+1,k=l;
	while(i<=mid&&j<=r){
		if(a[i]<=a[j]){
			b[k]=a[i];k++;i++;
		}
		else {
			ans+=mid-i+1;
			b[k]=a[j];k++;j++;
		}
	}
	while(i<=mid) b[k]=a[i],k++,i++;
	while(j<=r) b[k]=a[j],k++,j++;
	for(register int i=l;i<=r;i++){
		a[i]=b[i];
	}
}
11.链表
12.邻接表
struct sb{
	int to;
	int next;
	int dis;
}s[100010];
int head[5010],tot;
inline void add(int x,int y,int z){
	s[++tot].dis=z;
	s[tot].next=head[x];
	s[tot].to=y;
	head[x]=tot;
} 
13.字符串hash
inline ull get_val(int l,int r){
	return val[r]-val[l-1]*power(p,r-l+1);
}
inline void pre(){
	for(register int i=1;i<=len;i++){
		val[i]=val[i-1]*p+ch[i];
	}
}
14.KMP算法
inline void make_next(){
	next[1]=0;
	for(register int i=2,j=0;i<=n;i++){
		while(j>0&&a[i]!=a[j+1]) j=next[j];
		if(a[i]==a[j+1]) j++;
		next[i]=j;
	}
} 
inline void kmp(){
	make_next();
	for(register int i=1,j=0;i<=m;i++){
		if(j>0&&b[i]!=a[j+1]) j=next[j];
        if(b[i]==a[j+1]) j++;
		f[i]=j;
		//if(j==n) 匹配成功,字符串m在n中[i-j+1,i]出现  
	}
}
15.最小表示法
inline int calc(){
	for(register int i=1;i<=n;i++){
		s[i+n]=s[i];
	}
	int i=1,j=2,k;
	while(i<=n&&j<=n){
		for(k=0;k<=n&&a[i+k]==a[j+k];k++);
		if(k==n) break;
		if(a[i+k]>a[j+k]){
			i=i+k+1;
			if(i==j) i=i+1;
		}
		else {
			j=j+k+1;
			if(i==j) j=j+1;
		}
	}
	return min(i,j);
} 
16.huffman树
对于k叉huffman树:
a.首先在序列中补0使序列总个数n满足(n-1)%(k-1)==0。
b.然后将每一个数插入小根堆。
c.每一次取出前k个最小值,求和后插入小根堆。
d.重复操作至只有一个值,即为答案。
 
17.树的重心
inline void dfs(int x){
	inv[x]=true;
	size[x]=1;
	int maxx=0;
	for(register int i=head[x];i;i=s[i].next){
		int y=s[i].to;
		if(!inv[y]){
			dfs(y,x);
			size[x]+=size[y];
			maxx=max(maxx,size[y]);
		}
	}
	maxx=max(maxx,n-size[x]);
	if(maxx<ans){
		ans=maxx;
		pos=x;
	}
} 

数据结构

1.并查集–边带权

inline int find(int x){
	if(x==fa[x]) return x;
	int root=find(fa[x]);
	d[x]+=d[fa[x]];
	fa[x]=root;
}
inline int merge(int x,int y){
	x=find(x);y=find(y);
	fa[x]=y;
	//d[x]=... 视题目而定 
}

2. 线段树–扫描线

struct sb{
	int x;
	int yl,yr;
	int val;
	inline bool operator <(const sb &now)const{
		if(x==now.x) return val>now.val;
		return x<now.x;
	}
}s[1000010];
struct sb1{
	int cnt,sum;
	int l,r;
}tree[4000010];
inline void pushup(int rt){
	if(tree[rt].l==maxx&&tree[rt].r==maxx) return;
	if(tree[rt].cnt) {
		tree[rt].sum=val[tree[rt].r+1]-val[tree[rt].l];
	} 
	else {
		tree[rt].sum=tree[rt<<1].sum+tree[rt<<1|1].sum;
	}
} 
inline void update(int rt,int L,int R,int l,int r,int val){
	if(L<=l&&r<=R){
		tree[rt].cnt+=val;
		pushup(rt);
		return;
	}
	int mid=(l+r)>>1;
	if(L<=mid) update(rt<<1,L,R,l,mid,val);
	if(R>mid) update(rt<<1|1,L,R,mid+1,r,val);
	pushup(rt);
}
int main(){
	for(register int i=1;i<=2*n;i++){
		update(1,s[i].yl,s[i].yr-1,1,tot,s[i].val);
		ans+=1ll*tree[1].sum*(s[i+1].x-s[i].x);
	}
}

3. 点分治

4. 可持久化线段树

struct sb{
	int l,r;
	int sum;
}tree[400010];
int tot=0,root[100010],val[100010];
inline int build(int l,int r){
	int p=++tot;
	if(l==r){
		tree[tot].sum=val[l];
		return tot;	
	}
	int mid=(l+r)>>1;
	tree[tot].l=build(l,mid);
	tree[tot].r=build(mid+1,r);
	tree[tot].sum=tree[tree[tot].l].sum+tree[tree[tot].r].sum;
	return tot;
}

root[0]=build(1,n);

inline int insert(int now,int l,int r,int pos,int val){
	int p=++tot;
	tree[tot]=tree[now];
	if(l==r){
		tree[tot].sum=val;
		return tot;
	}
	int mid=(l+r)>>1;
	if(pos<=mid) {
		tree[tot].l=insert(tree[now].l,l,mid,pos,val);
	}
	else {
		tree[tot].r=insert(tree[now].r,mid+1,r,pos,val);
	}
	tree[tot].sum=tree[tree[tot].l].sum+tree[tree[tot].r].sum;
	return tot;
}

root[i]=insert(root[i-1],1,n,pos,val);

inline int query(int p,int q,int l,int r,int k){
	if(l==r){
		return l;
	}
	int now_val=tree[tree[p].l].sum-tree[tree[q].l].sum;
	int mid=(l+r)>>1;
	if(now_val>=k){
		return query(tree[p].l,tree[q].l,l,mid,k);
	}
	else {
		return query(tree[p].r,tree[q].r,mid+1,r,k-now_val);
	}
}

int ans=a[query(root[r],root[l-1],1,t,k)];

5. trie

char ch[100010][30];
bool end[100010];
inline void insert(char *s){
	int len=strlen(s),p=1;
	for(register int k=0;k<len;k++){
		int c=s[k]-'a';
		if(!ch[p][c]) ch[p][c]=++tot;
		p=ch[p][c];
	}
	end[p]=true;
}
inline bool search(char *s){
	int len=strlen(s),p=1;
	for(register int k=0;k<len;k++){
		int c=s[k]-'a';
		p=ch[p][c];
		if(!p) return false;
	}
	return end[p];
}
6. 可持久化01trie(可用于解决区间异或问题)
int size[100010],ch[600010][2],root[100010],tot;
inline void pushup(int rt){
	size[rt]=size[ch[rt][0]]+size[ch[rt][1]];
}
inline void insert(int pre,int &now,int pos,int val){
	now=++tot;
	size[now]=size[pre];
	if(pos<0){
		size[now]++;
		return;
	}
	int d=(val>>pos)&1;
	ch[now][d^1]=ch[pre][d^1];
	insert(ch[pre][d],ch[now][d],pos-1,val);
	pushup(now);
}
inline int query(int l,int r,int pos,int val){
	int ans=0;
	while(pos>=0){
		int d=(val>>pos)&1;
		if(size[ch[r][d^1]]-size[ch[l][d^1]]>0){
			l=ch[l][d^1];	
			r=ch[r][d^1];
			ans+=(1<<pos);
		}
		else {
			l=ch[l][d];
			r=ch[r][d];
		}
	}
	return ans;
}
7.单调栈
用处:
1.查询每一个数之前或之后第一个比它大(小)的数 
2.寻找每一个之后的序列中最大或最小的数 
8.单调队列

数论

质数判定–试除法

inline bool is_prime(int n){
	for(register int i=2;i<=sqrt(n);i++){
		if(n%i==0){
			return false;
		}
	}
	return true;
}

质数筛选–Eratosthenes筛法

inline void primes(int n){
	memset(inv,false,sizeof inv);
	for(register int i=1;i<=n;i++){
		if(!inv[i]){
			for(register int j=1;j<=n/i;j++){
				inv[i*j]=true;
			}
		}
	}
}

质数筛选–线性筛法

inline void primes(int n){
	for(register int i=1;i<=n;i++){
		if(v[i]==0) v[i]=i,pri[++tot]=j;
		for(register int j=1;j<=tot;j++){
			if(pri[j]>v[i]||pri[j]>n/i) break; 
			v[i*pri[j]]=pri[j];
		} 
	}
}

质因数分解–试除法

inline void divide(int n){
	m=0;
	for(register int i=2;i<=sqrt(n);i++){
		if(n%i==0){
			p[++m]=i;c[m]=0;
			while(n%i==0){
				c[m]++;
				n/=i;
			} 
		}
	}
	if(n>1){
		p[++m]=i;c[m]=1;
	}
}

求n的正约数集合–试除法

inline void calc(int n){
	for(register int i=1;i*i<=n;i++){
		if(n%i==0){
			fac.push_back(i);
			if(i!=n/i){
				fac.push_back(n/i);
			}
		}
	}
}

求1~n的正约数集合–倍数法

inline void calc(int n){
	for(register int i=2;i<=n;i++){
		for(register int j=1;j<=n/i;j++){
			fac[i*j].push_back(i);
		}
	}
}

求最大公约数(辗转相除法)

inline int gcd(int a,int b){
	return b==0?a:gcd(b,a%b);
}

求最大公约数(更相减损术)

inline int gcd(int a,int b){
	while(a!=b){
		if(a>b) a=a-b;
		else b=b-a;
	}
	return a;
}

扩展欧几里得定理

inline int exgcd(int a,int b,int &x,int &y){
	if(b==0) {
		x=1;y=0;
		return a;
	}
	int d=exgcd(b,a%b,x,y);
	int z=x;x=y;y=z-(a/b)*y;
	return d;
}

求n的欧拉函数

inline int euler(int n){
	int ans=n;
	for(register int i=2;i<=sqrt(n);i++){
		if(n%i==0){
			while(n%i==0) n/=i;
			ans=ans/i*(i-1);
		}
	} 
	if(n>1) {
		ans=ans/n*(n-1);
	}
	return ans;
} 

求1~n的欧拉函数(Eratosthenes筛法)

inline void euler(int n){
	for(register int i=2;i<=n;i++) phi[i]=i;
	for(register int i=2;i<=n;i++){
		if(phi[i]==i){
			for(register int j=i;j<=n;j+=i){
				phi[j]=phi[j]/i*(i-1);
			}
		}
	}
} 

求1~n的欧拉函数(线性筛法)

inline void euler(int n){
	for(register int i=2;i<=n;i++){
		if(!v[i]) v[i]=i,pri[++tot]=i,phi[i]=i-1;
		for(register int j=1;j<=tot;j++){
			if(pri[j]>v[i]||pri[j]>n/i) break;
			phi[i*pri[j]]=phi[i]*(i%pri[j]?pri[j]-1:pri[j]);
			v[i*pri[j]]=pri[j];
		}
	}
} 

欧拉定理、费马小定理、欧拉定理推论及其扩展

裴蜀定理

对于任意整数a和b,存在一对整数x和y,满足ax+by=gcd(a,b)
Baby Step,Giant Step算法
int baby_step_giant_step(int a,int b,int p){
	map<int,int>hash;
	hash.clear();
	b%=p;
	int t=(int)sqrt(p)+1;
	for(register int j=0;j<t;j++){
		int val=1ll*power(a,j,p)*b%p;
		hash[val][j];
	}
	a=power(a,t,p);
	if(a==0) return b==0?1:-1;
	for(register int i=0;i<=t;i++){
		int val=power(a,i,p);
		int j=hash.find(val)==hash.end()?-1:hash[val];
		if(j>=0&&i*t-j>=0) return i*t-j;
	}
	return -1;
}
矩阵乘法
inline void mul(){
	for(register int i=1;i<=n;i++){
		for(register int j=1;j<=m;j++){
			for(register int k=1;k<=p;k++){
				f[i][j]=f[i][j]+a[i][k]*b[k][j];
			}
		}
	}
}
高斯-约旦消元法
for(register int i=1;i<=n;i++){
	int data=i;
	for(register int j=i+1;j<=n;j++){
		if(fabs(f[data][i])<fabs[f[j][i]]) data=j;
	}
	if(data!=i){
		for(register int j=1;j<=n+1;j++){
			swap(f[data][j],f[i][j]);
		}
	}
	if(fabs(f[i][i])<eps) {
		printf("No Solution\n");return 0;
	}
	for(register int j=1;j<=n;j++){
		if(j!=i){
			double tmp=f[j][i]/f[i][i];
			for(register int k=1;k<=n+1;k++){
				f[j][k]-=f[i][k]*tmp;				
			}
		}
	}
}
Lucas定理
Lucas(n,m,p)=C(n%p,m%p,p)*Lucas(n/p,m/p,p)
二项式定理

中国剩余定理
inline void cri(){
	for(register int i=1;i<=n;i++){
		M=M*m[i];
	}
	for(register int i=1;i<=n;i++){
		ll now=M/m[i];
		ll x,y;
		exgcd(now,m[i],x,y);
		t[i]=(x%mod+mod)%mod;
		ans+=a[i]*t[i]*now;
	}
}
01分数规划–二分
扩展中国剩余定理
inline void excri(){
	ll c=((a[i]-ans)%m[i]+m[i])%m[i];
	ll x,y;
	ll d=exgcd(M,m[i],x,y);
	if(c%d){
		printf("No Solution\n");
		return 0;
	}
	x=mul(x,c/d,m[i]);
	ans+=x*M;
	M*=m[i]/d;
	ans=(ans+M)%M;
}

DP

1. 背包:

a. 01背包
for(register int i=1;i<=n;i++){
	for(register int j=m;j>=w[i];j--){
		f[j]=max(f[j],f[j-w[i]]+v[i]);
	}
}
b. 多重背包
  1. 朴素写法
for(register int i=1;i<=n;i++){
	for(register int j=1;j<=c[i];j++){
    	for(register int k=m;k>=w[i];k--){
        	f[k]=max(f[k],f[k-w[i]]+v[i]);
        }
    }
}
  1. 二进制拆分
int s[110],tot;
for(register int i=1;i<=n;i++){
	int tot=0,now=1;
	while(c[i]>=now){
		s[++tot]=now;
		c[i]-=now;
		now*=2;
	} 
	if(c[i]) {
		s[++tot]=c[i];
	}
	for(register int j=1;j<=tot;j++){
		for(register int k=m;k>=s[j]*w[i];k--){
			f[k]=max(f[k],f[k-s[j]*w[i]]+s[j]*v[i]);
		}
	}
}
  1. 单调队列
int q[110][3];
for(register int i=1;i<=n;i++){
	int c[i]=min(c[i],m/v[i]);
	for(register int j=0;j<v[i];j++){
		head=tail=0;
		for(register int k=1;k<=(m-j)/v[i];k++){
			int now_val=dp[k*v[i]+j]-k*w[i];
			while(head<=tail&&q[tail][1]<=now_val) tail--;
			q[++tail][1]=now_val;
			q[tail][2]=k;
			while(head<=tail&&k-q[head][1]>c[i]) head++;
			dp[k*v[i]+j]=max(dp[k*v[i]+j],q[head][1]+k*w[i]);
		}
	}
} 
c. 完全背包
for(register int i=1;i<=n;i++){
	for(register int j=w[i];j<=m;j++){
		f[j]=max(f[j],f[j-w[i]]+v[i]);
	}
}
d. 分组背包
for(register int i=1;i<=n;i++){
	for(register int j=m;j>=0;j--){
		for(register int k=1;k<=c[i];k++){
			if(w[i][k]<=j){
				f[j]=max(f[j],f[j-w[i][k]]+v[i][k]);
			}
		}
	}
}
e. 有依赖性的树形DP(树上背包)
vector<int>son[100010];
int dp[1010][1010];
inline void dfs(int x){
	f[x][0]=0;
	for(register int i=0;i<son[x].size();i++){
		int y=son[x][i];
		dfs(y);
		for(register int j=m;j>=0;j--){
			for(register int t=0;t<=j;t++){
				dp[x][j]=max(dp[x][j],dp[x][j-t]+dp[y][t]);
			}
		}
	}
	if(x!=0){
		for(register int j=m;j>=w[x];j--){
			dp[x][j]=dp[x][j-w[x]]+v[x];
		}
	}
}
f. 环形DP 破环成链,线性DP

图论

1. 最短路

a. spfa(它已经死了)
struct sb{
	int to;
	int next;
	int dis;
}s[400010];
bool inv[100010];
int head[100010],tot,dis[100010],cnt[100010];
inline void spfa(){
	queue<int>q;
	q.push(1);
	for(register int i=1;i<=n;i++) dis[i]=0x3f3f3f3f,cnt[i]=0;
	dis[1]=0;
	inv[1]=true;
	cnt[1]=1;
	while(!q.empty()){
		int x=q.front();
		q.pop();
		inv[x]=false;
		for(register int i=head[x];i;i=s[i].next){
			int y=s[i].to;
			if(dis[y]>dis[x]+s[i].dis){
				dis[y]=dis[x]+s[i].dis;
				if(!inv[y]){
					inv[y]=true;
					cnt[y]++;
					if(cnt[y]==n)  return;
					q.push(y);
				}
			}
		}
	}
}
b. dijkstra
struct sb{
	int to;
	int next;
	int dis;
}s[400010];
bool inv[100010];
int head[100010],tot,dis[100010],cnt[100010];
priority_queue< pair<int,int> >q;
inline void spfa(){
	memset(dis,0x3f,sizeof dis);
	memset(inv,false,sizeof inv);
	q.push(make_pair(0,1));
	dis[1]=0;
    cnt[1]=1;
	while(!q.empty()){
		int x=q.top().second;
		q.pop();
		if(inv[x]) continue;
		inv[x]=true;
		for(register int i=head[x];i;i=s[i].next){
			int y=s[i].to;
			if(dis[y]>dis[x]+s[i].dis){
				dis[y]=dis[x]+s[i].dis;
				q.push(make_pair(-dis[y],y));
			}
            else if(dis[y]==dis[x]+s[i].dis){
            	cnt[y]+=cnt[x];//从源点到y的最短路径的条数
        	}
		}
	}
}
c. floyd
for(register int k=1;k<=n;k++){
	for(register int i=1;i<=n;i++){
		if(i!=k){
			for(register int j=1;j<=n;j++){
				if(i!=j&&k!=j){
					dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
				}
			}
		}
	}
}

2. 最小生成树

a. kruskal算法
struct sb{
	int x,y,dis;
	inline bool operator <(const sb &x) const{
		return dis<x.dis;
	}
}s[100010];
int fa[100010];
inline int find(int x){
	if(x==fa[x]) return x;
	else fa[x]=find(fa[x]);
}
inline void kruskal(){
	sort(s+1,s+m+1);
	int tot=0,ans=0;
	for(register int i=1;i<=m;i++){
		int fx=find(s[i].x),fy=find(s[i].y);
		if(fx==fy) continue;
		fa[fx]=fy;
		ans+=s[i].dis;
		tot++;
		if(tot==n-1){
			break;
		}
	}
}
b. prim算法
for(register int i=1;i<n;i++){
	int v=-1;
	for(register int j=1;j<=n;j++){
		if(!inv[j]&&(v==-1||(dis[v]>dis[j]))){
			v=j;
		}
	}
	inv[v]=true;
	for(register int j=1;j<=n;j++){
		if(!inv[j]){
			dis[j]=min(dis[j],dist[v][j]);
		}
	}
}
for(register int i=2;i<=n;i++){
	ans+=dis[i];
}

3. 树的直径

inline void dfs(int x,int fa,int sum){
	if(sum>maxx){
		maxx=sum;
		maxx_pos=x;
	}
	for(register int i=head[x];i;i=s[i].next){
		int y=s[i].to;
		dfs(y,x,sum+s[i].dis);
	}
}
dfs(1,0,0);
maxx=0;
dfs(maxx_pos,0,0);

4. LCA-tarjan

int v[100010],fa[100010];
inline int find(int x){
	if(x==fa[x]) return x;
	else fa[x]=find(fa[x]);
}
inline void tarjan(int x){
	v[x]=1;
	for(register int i=head[x];i;i=s[i].next;i++){
		int y=s[i].to;
		tarjan(y);
		fa[y]=x;
	}
	for(register int i=0;i<q[x].size();i++){
		int y=q[x][i],data=q_data[x][i];
		if(v[y]==2){
			ans[data]=find(y);
		}
	}
	v[x]=2;
}

5.差分约束

xi-xj<=d <-> add(xj,xi,d) 

xi-xj>=d <-> add(xi,xj,-d)

spfa求最短路

6.tarjan求联通性及缩点找环

a.无向图tarjan求割点,割边,点双联通分量
inline void tarjan(int x,int edge){
	dfn[x]=low[x]=++num;
	sta[++top]=x;
	if(x==root&&head[x]==0){
		dcc[++cnt].puch_back(x);
		return;
	}//dcc 
	int flag=0;
	for(register int i=head[x];i;i=s[i].next){
		int y=s[i].to;
		if(!dfn[y]) {
			tarjan(y,i);
			low[x]=min(low[x],low[y]);
			if(dfn[x]<low[x]) bridge[i]=bridge[i^1]=true;//割边 
			if(dfn[x]<=low[x]){
				flag++;
                if(x!=root||flag>1) cut[x]=true;// 割点 
				int z;cnt++;// dcc
				do{
					z=sta[top--];
					dcc[cnt].push_back(z);
				}while(z!=y);
				dcc[cnt].push_back(x);
			}
		}
		else if(i!=(edge^1)){
			low[x]=min(low[x],dfn[y]);
		}
	}
}
b. 边双联通分量及其缩点
inline void dfs(int x){
	c[x]=tot;
	for(register int i=head[x];i;i=s[i].next){
		int y=s[i].to;
		if(!c[y]&&!bridge[i]){
			dfs(y);
		}
	}
}
int main(){
	for(register int i=1;i<=n;i++){
		tot++;
		dfs(i);
	}
	for(register int i=1;i<=n;i++){
		for(register int j=head[i];j;j=s[j].next){
			int y=s[j].to;
			if(c[i]==c[y]) continue;
			add_edge(c[i],c[y]);
		}
	}
}
c. 点双联通分量缩点
int data[100010];
num=cnt;
for(register int i=1;i<=n;i++){
	if(cut[i]){
		data[i]=++num;
	}
}
for(register int i=1;i<=cnt;i++){
	for(register int j=0;j<dcc[i].size();j++){
		int y=dcc[i][j];
		if(cut[y]){
			add_edge(i,data[y]);
			add_edge(data[y],i);
		}
		else {
			c[y]=i;
		}
	}
}
d. 有向图 联通分量
inline void tarjan(int x){
	dfn[x]=low[x]=++num;
	inv[x]=true;
	sta[++top]=x;
	for(register int i=head[x];i;i=s[i].next){
		int y=s[i].to;
		if(!dfn[y]){
			tarjan(y);
			low[x]=min(low[x],low[y]);
		}
		else if(inv[y]){
			low[x]=min(low[x],dfn[y]);
		}
	}
	if(dfn[x]==low[x]){
		cnt++;
		int y;
		do{
			y=sta[top--];
			inv[y]=false;
			c[y]=cnt;
			scc[cnt].push_back(y);
		}while(x!=y);
	} 
}
二分图匹配
#define inf 2147483647
using namespace std;
struct Edge
{
    int to;
    int s;
    int last;
}e[2001000];
int dep[4100],in[4100],cnt=1;
int s=0,t;
void addedge(int x,int y,int z)
{
    e[++cnt].last=in[x];
    e[cnt].s=z;
    e[cnt].to=y;
    in[x]=cnt;
}
bool bfs()
{
    memset(dep,0,sizeof(dep));
    queue<int> que;
    que.push(s);dep[s]=1;
    while(!que.empty())
    {
        int u=que.front();que.pop();
        for(int i=in[u];i>=0;i=e[i].last)
        {
            if(!dep[e[i].to]&&e[i].s>0)
            {
                dep[e[i].to]=dep[u]+1;
                que.push(e[i].to);
            }
        }
    }
    if(dep[t])    return true;
    else    return false;
}
int dfs(int now,int cur)
{
    if(now==t)    return cur;
    for(int i=in[now];i>=0;i=e[i].last)
    {
        if(dep[e[i].to]==dep[now]+1&&e[i].s>0)
        {
            int flow=dfs(e[i].to,min(cur,e[i].s));
            if(flow)
            {
                e[i].s-=flow;
                e[i^1].s+=flow; 
                return flow;
            }
        }
    }
    return 0;
}
int main()
{
    int n,m,e,i,l,x,y,ans=0;
    memset(in,-1,sizeof(in));
    scanf("%d%d%d",&n,&m,&e);t=n+m+1;
    for(i=1;i<=n;i++){addedge(0,i,1);addedge(i,0,0);}
    for(i=n+1;i<=n+m;i++){addedge(i,t,1);addedge(t,i,0);}
    for(i=1;i<=e;i++)
    {
        scanf("%d%d",&x,&y);if(x>n||y>m)    continue;
        addedge(x,y+n,1);addedge(y+n,x,0);
    }
    while(bfs())
    {
        while(now=dfs(s,inf))
            ans+=now;
    }
    printf("%d",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值