十四五规划正式发布:中国将聚焦芯片,人工智能等关键领域
《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》全文正式发布。全文提出,打造数字经济新优势。聚焦高端芯片、操作系统、人工智能关键算法、传感器等关键领域。加快布局量子计算、量子通信、神经芯片、DNA存储等前沿技术。构建基于5G的应用场景和产业生态,在智能交通、智慧物流、智慧能源、智慧医疗等重点领域开展试点示范。实施“上云用数赋智”行动,推动数据赋能全产业链协同转型。
中国正关注着前沿技术的研究,十四五规划指出,未来五年,中国力争在芯片,人工智能,量子计算等先进技术领域取得领先的地位。同时,2021年-2025年,中国将投入每年以7%增长的研发经费。在2021年把基础研究的支出增加10.6% ,并制定一个为期10年的研究战略。
Nimble Robotics融资5000万美元,斯坦福学生创业,李飞飞与Thrun加入董事会
Nimble Robotics近日融资5000万美元,由DNS Capital和GSR Ventures领投,Accel和Reinvent Capital跟投。Nimble Robotics创始人是斯坦福大学的博士Simon Kalouche。核心技术是深度模仿学习。他们的机器人现在不是百分之百自动的,少量时候还需要人工干预,但大大提高了实用性和可靠性。
种子投资人李飞飞和另一位斯坦福大学教授、飞行汽车公司Kitty Hawk创始人Sebastian Thrun(无人车技术先驱)都加入了公司董事会。
Nimble Robotics简介:这是一家挑选包装机器人研发商,它构建了AI驱动的机器人,该机器人可以拾取和包装任何东西以实现按需订单履行。机器人可以智能地挑选,包装和处理数百万种产品,从服装和电子产品到美容,日用品和杂货。
首个“生物医药+机器学习”大规模资源数据集社区TDC诞生
近日,由美国多所著名大学(哈佛大学,乔治亚理工,麻省理工学院,卡耐基梅隆大学,斯坦福大学,伊利诺伊大学厄巴纳 - 香槟分校)的研究人员,与医疗数据公司 IQVIA 合作,发布了医疗领域内首个面向疗法的统一机器学习开源框架 ——Therapeutics Data Commons(TDC)。
TDC 的详细介绍论文Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics已经通过预印本发布发表在自然杂志上。
目前,TDC已经收录有22个机器学习任务,以及与它们所对应的与安全药物研发过程有关的66个数据集,且包含许多社区性资源功能,属一个集各种资源和工具为一体的线上疗法研发用的机器学习研究平台。
根据论文,当前TDC上的社区资源主要与数据处理函数、系统模型评估、数据拆分以及分子合成模拟有关。

现在,TDC的两个leaderboard——ADMET、Drug Combination已经发布。其中,ADMET是一个非常适合没有任何生物医药背景的ML研究者起步的任务。
TDC访问地址:https://tdcommons.ai/。
世界首台人工智能地震监测系统问世,1秒内精确估算震源数据
近日,中国科学技术大学团队与中国地震局合作,推出世界首个人工智能地震监测系统,可1秒内精确估算地震震源机制参数,还可以帮助预测海啸、强余震的可能分布等。研究人员介绍,地震发生后,如能提前3秒接收预警信息,伤亡程度就会减少14%。
从地震记录推算地震震源机制是个计算耗时的过程,自1938年地震学家第一次开始推算地震断层面解,震源机制参数一直是个研究性问题。目前世界各地地震监测台网在地震速报信息里只有发震时刻、震级、地点和深度,不包括震源机制参数,地震发生几分钟或更长的时间后才报出震源机制参数。
研究人员们采用人工智能方法有效地解决了这个复杂计算问题。应用完备的理论地震大数据训练人工智能神经网络,完善了该系统的准确性和可靠性,当地震发生后,实际地震数据进入人工智能系统,在不到1秒的时间内系统准确地估算出震源机制参数,大量实际数据测试证实了该方法的有效性,实现了该领域的重要突破。
这一研究成果于2021年3月4日发表在《自然通讯》(Nature Communications)杂志上。此外,该成果目前正在转化成实际运行的功能,近期将在中国科学技术大学和中国地震局合作研发的“智能地动”人工智能地震监测系统上试运行。
清华大学和芯翌科技联合发布全球最大的公开人脸数据集
清华大学自动化系智能视觉实验室与芯翌科技合作,近日发布了业界规模最大的人脸数据集WebFace260M,相关学术论文已经被计算机视觉国际顶级会议CVPR 2021接收。该数据集完全基于全球互联网公开人脸数据构建,包含数百万ID和数亿图片,旨在进一步推动人脸识别相关技术的进步,促进智能化行业的发展,助力AI时代科技创新。
网站地址:https://www.face-benchmark.org
论文地址:https://arxiv.org/abs/2103.04098
点击左下角“阅读原文”,了解更多!