导读
2023 智源大会上,AI生命科学论坛在昌平国家实验室主任,北京大学教授谢晓亮的主持下,顺利召开。本次论坛的联合主席是智源研究院健康计算研究中心负责人叶启威。
论坛由诺贝尔化学奖得主Arieh Warshel的主题报告开场,介绍了如何利用人工智能研究中酶的多尺度问题;随后北京大学化学与分子工程学院教授高毅勤、Mila-Quebec人工智能研究院副教授唐建、西湖大学遗传学讲席教授、副校长许田、北京大学生物医学创新中心(BIOPIC)研究员高歌也围绕相关领域给出了主题报告。讲者们在报告和最后的讨论中,洞察深刻,直面问题的核心,指出了人工智能在生命科学领域的真实作用。
“AI在生物领域的成就,不仅是深度学习的成功,也是基础理论的成功”。
“蛋白质设计领域取得了成功 ,并非完全依赖于人工智能(AI),需要和实验相结合。”
.....
以下为精彩回顾,请观众欣赏。
利用人工智能研究中酶的多尺度问题
Arieh Warshel丨诺贝尔化学奖得主
诺贝尔化学奖得主Arieh Warshel带来了,题为“Multl Scale and Artificlalintelligence Studies of Enzymes”的精彩报告。在本次报告中,Arieh Warshel教授对其近年来的工作进行了梳理,其工作通过模拟和人工智能的结合,揭示了酶催化的机制,并成功地设计出了更高效的酶和具有特定选择性的药物。
Arieh Warshel表示,人工智能在酶设计过程中主要起到了以下作用:
1.辅助模拟和预测:人工智能被用来模拟和预测化学反应的过程,特别是在酶的催化过程中。
2.改进酶的设计:人工智能被用来设计新的酶突变体。通过计算最大熵的相关性,并将其与催化剂相关联,科学家们能够设计出比野生(自然界)型酶更有效的新突变体。这种方法虽然简单,但取得了令人鼓舞的成果。
3.理解和预测突变的影响:在研究人工合成的酶(如肯普消除酶)时,人工智能被用来预测突变的影响。
Arieh Warshel提到,通过理解酶的机制和反应动力学,可以尝试设计新的酶,以实现特定的功能。这对于开发新的生物催化剂、药物研发和其他生物技术应用具有潜在的重要意义。当然,这个领域还存在许多挑战和限制,但随着计算能力的提升和更深入的研究,我们可以希望在酶设计方面取得更大的进展。
在回答观众提问时候,Arieh Warshel肯定了最大熵的方法,他表示他们发现了一种非常高效的插值方法,即通过设计更大的最大熵,从而预测蛋白质稳定性。当稳定性发生变化时,催化剂往往也会发生变化。这种方法关注蛋白质群之间的相互作用,并且稳定性与催化剂密切相关。尽管他们尚未证明这种方法具有普遍适用性,但在他们的研究中,这种基于最大熵的插值方法已经取得了很好的效果。
复杂分子体系研究中
基于物理和基于数据的模拟方法的结合
高毅勤丨北京大学教授
北京大学化学与分子工程学院教授高毅勤带来了《复杂分子体系研究中基于物理和基于数据的模拟方法的结合》的主题报告。报告主要围绕具有高复杂性和多尺度性的三个问题进行:如何使用分子模拟进行分子对接,蛋白质之间的相互作用,以及细胞内复杂体系的模拟。
针对这些工作,高毅勤提到,通常会结合物理模型和数据驱动模型来模拟复杂体系。例如在预测小分子与蛋白质结合能力时,将受物理限制模型与深度学习相结合,取得了性能和效率提升。
高毅勤认为深度学习具有独特的能力。深度学习能够利用大数据和已知的序列信息,整合了大量的物理信息,例如原子间的合适距离等,快速得到蛋白质等分子的结构。例如谷歌DeepMind的成功表现在他们运用深度学习方法从序列快速得到结构的能力上。
高毅勤还提倡建立统一的物理与深度学习框架,这不仅能提高效率和精度,还能融合物理模型和数据计算,帮助补充数据来校验模型,提高模型的可解释性。在统一框架里,可以进行动力学统计,然后信息反传给预测模型,实现端到端打通。
其实,AI在生物领域的成就,不仅