报告主题:使用强化学习技术微调扩散模型教程与综述
报告日期:8月7日(周三)10:30-11:30
报告要点:
扩散模型具有出色的生成能力。然而,当被要求在复杂条件下满足特定的高精度目标时,它们往往无法完成。想象一下,培训员工不仅要执行任务,还要根据动态的市场需求创新提高生产力的方法。这类似于强化学习为生成模型带来的效果。通过结合强化学习算法(如近端策略优化PPO),我们现在可以指导扩散模型不仅生成样本,而且还要优化样本的特定性质,例如分子与特定靶点的对接效果, RNA 翻译效率或蛋白质稳定性。在药物研发中,此方法在生物学和化学领域的定制生成能力能使模型生成高稳定性和高疗效的分子或蛋白质,大幅加速研发过程并降低成本。此教程不仅全面分析了不同算法理论与实验上的区别与优劣,还阐明了这些算法与其他领域的关联,如基于分类器的条件生成,基于流的扩散模型,路径积分理论以及MCMC。
报告嘉宾:
赵雨来是普林斯顿大学电子与计算机工程系的博士生,师从Prof. S.Y. Kung, 研究方向为机器学习。他近期的研究兴趣主要集中在从理论和实验两个方面探索现代强化学习和扩散模型, 尤其是使用他们来解决具有挑战性的科学问题。他在ICML、ICLR、AISTATS等顶级会议上发表了多篇文章。此前,他在清华大学电子工程系获得了学士学位。
扫码报名
近期热门报告