C++ 最大k乘积问题 线性规划

问题描述:设X是一个n位十进制整数,如果将X划分为K段,则可得到K个整数,这K个整数的乘积称为X的一个K乘积。请设计算法并编程实现,对于给定的X 和K,求出X的最大K乘积。
输入:X,K,n
输出:X的最大K乘积。

例如十进制整数 1234 划分为 3 段可有如下情形:
1 × 2 × 34 = 68
1 × 23 × 4 = 92
12 × 3 × 4 = 144

m[i][j] 表示: 从第i位到第j位所组成的十进制数
dp[i][j]表示前i位分成j段所得的最大乘积;i(1<=i<=n)的每轮循环,其中前N位数(1<=N<i)分成 j-1 段,乘后i-N位数字


#include<iostream>
#include <algorithm>
using namespace std;




int main()
{

	int n, k, x;
	cin >> x>>k>>n;
	int dp[99][99] = { 0 };
	int m[99][99]; 
	int *a=new int[n];

	int t1 = x;
	int t2 = x;
	for (int i = n; i >= 1; i--)
	{
		
		t2 = t1 % 10;
		a[i] = t2;
		t1 /= 10;
		
	}
	//m[i][j] 第i-j位组成的数
	for (int i = 1; i <= n; i++)
		m[i][i] = a[i];
	for (int i = 1; i <= n; i++)
	{
		for (int j = i + 1; j <= n; j++)
		{
			m[i][j] = m[i][j - 1] * 10 + m[j][j];
		}
	}

	//dp[i][j]前i位分成j段
	//后n-i位最多分n-i段,则前i位最少分k-(n-i)段
	for (int i = 1; i <= n; i++)//前i个数字   
	{
		for (int j = 1; j <= i; j++)//分成j段
		{
			if (j > k)
				break;

			if (j < k - n + i)
				continue;

			if (j == 1) //分成1段则为自己
			{
				dp[i][j] = m[1][i]; 
				continue;
			}

			for (int r = 1; r < i; r++)  //前r位分成j-1段乘后i-r位的数字
			{
				
					dp[i][j] = max(dp[i][j], dp[r][j - 1] * m[r + 1][i]);
			}

		}
	}
	cout << dp[n][k] << endl;
	return 0;
}

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
追赶法(也称为扫描法)是一种用于求解带有三对角矩阵的线性方程组的直接方法。三对角矩阵是一种形如下面的矩阵: $$\begin{bmatrix} b_1 & c_1 & 0 & 0 & \cdots & 0 \\ a_2 & b_2 & c_2 & 0 & \cdots & 0 \\ 0 & a_3 & b_3 & c_3 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n-1} & b_{n-1} & c_{n-1} \\ 0 & 0 & \cdots & 0 & a_n & b_n \end{bmatrix}$$ 其中 $a_i$,$b_i$,$c_i$ 均为实数。这种矩阵在很多物理和工程问题中都有应用,例如求解热传导方程、电路分析等。 追赶法的主要思想是将原线性方程组转化为两个带有对角矩阵的方程组,然后分别用回带法(即从后往前依次求解每个未知量)求解这两个方程组。具体来说,假设原方程组为 $Ax=b$,其中 $A$ 是一个 $n\times n$ 的三对角矩阵,$b$ 是一个 $n$ 维列向量,我们可以将 $A$ 分解为下面两个对角矩阵的乘积: $$A=L\cdot U$$ 其中 $L$ 是一个 $n\times n$ 的下三角矩阵,$U$ 是一个 $n\times n$ 的上三角矩阵,它们的对角线元素分别为: $$l_{i,i}=1,\quad u_{i,i}=b_i$$ $$l_{i+1,i}=\frac{a_{i+1}}{u_{i,i}},\quad u_{i,i+1}=c_i$$ 这样,原方程组就可以写成以下两个方程组的形式: $$Ly=b'$$ $$Ux=y$$ 其中 $y$ 和 $b'$ 分别是 $L$ 和 $b$ 的前代和后代结果,$x$ 是待求解的向量。我们可以先用前代法求解 $Ly=b'$,然后再用回带法求解 $Ux=y$,从而得到 $x$ 的值。 下面给出一个 Python 实现追赶法的例子: ```python import numpy as np def tridiagonal_solver(a, b, c, d): """ Solve the tridiagonal linear system Ax = d, where A is a tridiagonal matrix with diagonal elements b, subdiagonal elements a, and superdiagonal elements c. Parameters: a, b, c: numpy arrays of shape (n-1,), representing the subdiagonal, diagonal, and superdiagonal elements of the tridiagonal matrix. d: numpy array of shape (n,), representing the right-hand side. Returns: x: numpy array of shape (n,), representing the solution. """ n = len(b) # Forward elimination for i in range(1, n): m = a[i-1] / b[i-1] b[i] = b[i] - m * c[i-1] d[i] = d[i] - m * d[i-1] # Back substitution x = np.zeros(n) x[n-1] = d[n-1] / b[n-1] for i in range(n-2, -1, -1): x[i] = (d[i] - c[i] * x[i+1]) / b[i] return x ``` 这个函数的输入参数是 $a$、$b$、$c$ 和 $d$,分别表示三对角矩阵的下对角线、对角线、上对角线和右侧向量。输出结果是线性方程组的解 $x$。函数首先进行前代消元,然后再进行回带求解。注意,这个函数会修改输入的 $b$ 和 $d$,因此如果需要保留原始数据,需要先做一份拷贝。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值