数字抽取滤波(一)

一、抽取原理(降频)

图1.1 D倍整数抽取的系统框图

x(n)=x(t)|_{t=nT_{s}}

欲使f_{s}减少D倍,即x(n)中每D个点中抽取一个组成新的序列x_{D}(n),

x_{D}(n)=x(Dn),-\infty <n<+\infty

 图 1.2 采样与抽取过程中的变化 (a)采样前的信号 (b)采样前的频谱
(c)采样后的信号 (d)采样后的频谱 (e)抽取后的信号 (f)抽取后的频谱

①对x_{D}(n)做z变换

X_D (z)=\sum_{n=-\infty }^{+\infty }x_{D}(n)z^{-n}=\sum_{n=-\infty }^{+\infty }x(Dn)z^{-n}

②现定义一个中间序列x_{1}(n):

x_{1}(n)=\left\{\begin{matrix} x(n), & n=0,\pm D,\pm 2D\cdots \\ 0,& else \end{matrix}\right.

*注{\color{Orange} x_{1}(n)}的采样频率仍是{\color{Orange} f_{s}}{\color{Orange} x_{D}(n)}的采样频率是{\color{Orange} f_{s}/D}

由此得,

x_{D}(n)=x(Dn)=x_{1}(Dn)

X_D (z)=\sum_{n=-\infty }^{+\infty }x_{1}(Dn)z^{-n}=\sum_{n=-\infty }^{+\infty }x_{1}(n)z^{-\frac{n}{D}}

即,

X_{D}(z)=X_{1}(z^{-\frac{1}{D}})

③然后找到X_{1}(z)X(z)的关系

令抽样序列为

p(n)=\sum_{i=-\infty }^{+\infty }\delta (n-Di)

即在D整数倍处的值为1,其余皆为0,采样频率为f_{s},对p(n)进行频域分析:

p(n)=\frac{1}{D}\sum_{k=0}^{D-1}W_{D}^{-kn},W_{D}=e^{-j\frac{2\pi }{D}}

对于x_{1}(n)其实就是原序列与抽样序列的乘积,即x_{1}(n)=x(n)p(n),所以

X_{1}(z)=\sum_{n=-\infty }^{+\infty }x(n)p(n)z^{-n}=\frac{1}{D}\sum_{n=-\infty }^{+\infty }[x(n)\sum_{k=0}^{D-1}W_{D}^{-kn}]z^{-n}=\frac{1}{D}\sum_{k=0}^{D-1}\sum_{n=-\infty }^{+\infty }x(n)(zW_{D}^{k})^{-n}

 即

X_{1}(z)=\frac{1}{D}\sum_{k=0}^{D-1}X(zW_{D}^{k})

X_{D}(z)=X_{1}(z^{\frac{1}{D}})=\frac{1}{D}\sum_{k=0}^{D-1}X(z^{\frac{1}D{}}W_{D}^{k})

z=e^{j\omega _{d}},\omega _{d}=2\pi f/(f_{s}/D)=2\pi fD/f_{s}=D\omega,带入上式

X_{D}(e^{j\omega _{d}})=\frac{1}{D}\sum_{k=0}^{D-1}X(e^{j\frac{\omega _{d}}{D}}e^{-j\frac{2\pi }{D}k})=\frac{1}{D}\sum_{k=0}^{D-1}X(e^{j\frac{(\omega _{d}-2\pi k)}{D}})

由上式可以看出,在频域上,输出信号频谱是由输入信号频谱在ω轴上每间隔2π/D的移位叠加,再进行D倍的扩展而成。输出信号频谱为周期为2π/D的周期信号。而在时域上,序列x(n)经过D倍采样,每间隔D-1个点被保留下来,最终形成降频后的新序列x_{D}(n)

 

  • 2
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值