最全傅里叶变换和拉普拉斯变换公式总结


因为傅里叶变换之类的很常用,时间长了不用总会忘记,所以一次性罗列出来权当总结好了。主要参考《信号与线性系统分析》(吴大正),也有的部分参考了复变函数。

1.δδ-函数相关运算

   nn阶导数的尺度变换

δ(n)(at)=1|a|1anδ(n)(t)δ(n)(at)=1|a|1anδ(n)(t)

 

   一阶导数和函数的乘积

 

f(t)δ′(t−t0)=f(t0)δ′(t−t0)−f′(t0)δ(t−t0)f(t)δ′(t−t0)=f(t0)δ′(t−t0)−f′(t0)δ(t−t0)

 

   nn阶导数和函数的乘积

 

f(t)δ(n)(t−t0)=∑i=0n(−1)i(ni)f(i)(t0)δ(n−i)(t−t0)f(t)δ(n)(t−t0)=∑i=0n(−1)i(ni)f(i)(t0)δ(n−i)(t−t0)

 

2.傅里叶级数和傅里叶变换

    傅里叶级数

 

f(x)=a02+∑n=1∞(ancosnπLx+bnsinnπLx)f(x)=a02+∑n=1∞(ancos⁡nπLx+bnsin⁡nπLx)

an=1L∫L−Lf(x)cosnπLxdxan=1L∫−LLf(x)cos⁡nπLxdx

bn=1L∫L−Lf(x)sinnπLxdxbn=1L∫−LLf(x)sin⁡nπLxdx

   半幅傅里叶级数

ϕ(x)=∑n=1∞CnsinnπxLϕ(x)=∑n=1∞Cnsin⁡nπxL

Cn=2L∫L0ϕ(x)sinnπxLdxCn=2L∫0Lϕ(x)sin⁡nπxLdx

  常见函数傅里叶变换

这里傅里叶变换的定义中,因子12π12π统一放在逆变换前。gτ(t)gτ(t)指的是关于yy轴对称宽度为ττ的门函数

gτ(t)↔τSa(ωτ2)gτ(t)↔τSa(ωτ2)

其中SaSa即SincSinc.
 

e−atε(t)↔1a+iωe−atε(t)↔1a+iω

e−a|t|↔2aa2+ω2e−a|t|↔2aa2+ω2

e−at2↔πa−−√e−ω24ae−at2↔πae−ω24a

δ(t)↔1δ(t)↔1

ε(t)↔πδ(ω)+1iωε(t)↔πδ(ω)+1iω

cos(ω0t)↔π[δ(ω+ω0)+δ(ω−ω0)]cos⁡(ω0t)↔π[δ(ω+ω0)+δ(ω−ω0)]

sin(ω0t)↔iπ[δ(ω+ω0)−δ(ω−ω0)]sin⁡(ω0t)↔iπ[δ(ω+ω0)−δ(ω−ω0)]

tn↔2π(i)nδ(n)(ω)tn↔2π(i)nδ(n)(ω)

1t↔−iπsgn(ω)1t↔−iπsgn(ω)

δT(t)↔ΩδΩ(ω)δT(t)↔ΩδΩ(ω)

3.性质

   时域微分

f(n)(t)↔(iω)nF(ω)f(n)(t)↔(iω)nF(ω)

   时域积分

∫t−∞f(τ)dτ↔πF(0)δ(ω)+F(ω)iω∫−∞tf(τ)dτ↔πF(0)δ(ω)+F(ω)iω


   频域微分

(−it)nf(t)↔F(n)(ω)(−it)nf(t)↔F(n)(ω)

   频域积分

πf(0)δ(t)+f(t)−it↔∫ω−∞F(ν)dνπf(0)δ(t)+f(t)−it↔∫−∞ωF(ν)dν

   对称性

F(t)↔2πf(−ω)F(t)↔2πf(−ω)

   尺度变换

f(at)↔1|a|F(ωa)f(at)↔1|a|F(ωa)

   时移

f(t±t0)↔e±iωt0F(ω)f(t±t0)↔e±iωt0F(ω)

   频移

f(t)e±iω0t↔F(ω∓ω0)f(t)e±iω0t↔F(ω∓ω0)

 

3.卷积的微分性质


设f(t)=g(t)∗h(t)f(t)=g(t)∗h(t),则f′(t)=g′(t)∗h(t)=g(t)∗h′(t)f′(t)=g′(t)∗h(t)=g(t)∗h′(t)

  卷积定理

时域f(t)=g(t)∗h(t)f(t)=g(t)∗h(t),频域有F(ω)=G(ω)H(ω)F(ω)=G(ω)H(ω)
时域f(t)=g(t)h(t)f(t)=g(t)h(t),频域有F(ω)=12πG(ω)∗H(ω)F(ω)=12πG(ω)∗H(ω)

周期函数fT(t)fT(t)傅里叶变换

由指数形式的傅里叶级数,两边取傅里叶变换,所以周期函数的傅里叶变换时受到2πFn2πFn调制的梳状脉冲(TT代表周期,Ω=2πTΩ=2πT)

fT(t)↔2π∑n=−∞∞Fnδ(ω−nΩ)fT(t)↔2π∑n=−∞∞Fnδ(ω−nΩ)

4.拉普拉斯变换

因果信号f(t)f(t)可以显式地写为f(t)ε(t)f(t)ε(t),一个因果信号及其单边拉普拉斯变换是一一对应的。每个非因果信号都对应唯一一个双边拉普拉斯变换,但是一个双边拉普拉斯变换在不同收敛域条件下,可以对应不同的非因果信号。

   常见的单边拉普拉斯变换

gτ(t−τ2)ε(t)gτ(t−τ2)ε(t)

∑n=0∞δ(t−nT)↔11−e−Ts∑n=0∞δ(t−nT)↔11−e−Ts

ε(t)↔1sε(t)↔1s

tε(t)↔1s2tε(t)↔1s2

e−atε(t)↔1s+ae−atε(t)↔1s+a

sin(βt)ε(t)↔βs2+β2sin⁡(βt)ε(t)↔βs2+β2

cos(βt)ε(t)↔ss2+β2cos⁡(βt)ε(t)↔ss2+β2

sinh(βt)ε(t)↔βs2−β2sinh⁡(βt)ε(t)↔βs2−β2

cosh(βt)ε(t)↔ss2−β2cosh⁡(βt)ε(t)↔ss2−β2

  性质(双边拉普拉斯变换记为Fb(s)Fb(s))

(单边)尺度变换

f(at)↔1aF(sa),a>0f(at)↔1aF(sa),a>0

(双边)尺度变换

f(at)⟷b1|a|Fb(sa)f(at)⟷b1|a|Fb(sa)

(单边)时移

f(t−t0)ε(t−t0)↔e−st0F(s)f(t−t0)ε(t−t0)↔e−st0F(s)

(双边)时移

f(t−t0)⟷be−st0Fb(s)f(t−t0)⟷be−st0Fb(s)

(单边,双边)复频移

es0tf(t)ε(t)↔F(s−s0)es0tf(t)ε(t)↔F(s−s0)

(单边)时域微分,可递推

f′(t)↔sF(s)−f(0−)f′(t)↔sF(s)−f(0−)

f′′(t)↔s2F(s)−sf(0−)−f′(0−)f″(t)↔s2F(s)−sf(0−)−f′(0−)

(双边)时域微分,可递推

f′(t)⟷bsFb(s)f′(t)⟷bsFb(s)

(单边)时域积分,可递推

∫t0−f(τ)dτ↔1sF(s)∫0−tf(τ)dτ↔1sF(s)

∫t−∞f(τ)dτ↔1sF(s)+1s∫0−−∞f(τ)dτ∫−∞tf(τ)dτ↔1sF(s)+1s∫−∞0−f(τ)dτ

(双边)时域积分,可递推

∫t0f(τ)dτ⟷b1sFb(s),α<σ<max(β,0)∫0tf(τ)dτ⟷b1sFb(s),α<σ<max(β,0)

∫t−∞f(τ)dτ⟷b1sFb(s),max(α,0)<σ<β∫−∞tf(τ)dτ⟷b1sFb(s),max(α,0)<σ<β

(单边,双边)ss域微分,可递推

(−t)f(t)↔dF(s)ds(−t)f(t)↔dF(s)ds

(单边)ss域积分,可递推

f(t)t↔∫∞sF(ν)dνf(t)t↔∫s∞F(ν)dν

对于傅里叶变换和拉普拉斯的积分性质,成立的条件是积分确实收敛,否则不成立。对于拉普拉斯变换的ss域积分性质,积分变量νν当作实数来积分(这一点可从其证明中看出来).

(单边,双边)时域卷积

f1(t)∗f2(t)↔F1(s)F2(s)f1(t)∗f2(t)↔F1(s)F2(s)

(单边)拉普拉斯逆变换

可以将一个有理分式拆成多项式+真分式的形式F(s)=P(s)+B(s)A(s)F(s)=P(s)+B(s)A(s),其中多项式部分的拉普拉斯逆变换是δδ函数的各阶导数,真分式部分可以作部分分式分解,再分别做逆变换。先求分母A(s)A(s)的根:
(1)若s0s0为一个单实根,则在部分分式中加入Ks−s0Ks−s0这一项,其中

K=[(s−s0)B(s)A(s)]∣∣∣s=s0K=[(s−s0)B(s)A(s)]|s=s0
(2)若s0,s∗0s0,s0∗为一个单重共轭复根,则在部分分式中加入K1s−s0+K2s−s∗0K1s−s0+K2s−s0∗,系数KK的计算方法同上,其中K1K1和K2K2必然是共轭关系
(3)若s0s0为一个r重实根,则在部分分式中加入

K1(s−s0)r+K2(s−s0)r−1+⋯+Krs−s0K1(s−s0)r+K2(s−s0)r−1+⋯+Krs−s0

其中

Ki={1(i−1)!di−1dsi−1[(s−s0)rB(s)A(s)]}∣∣∣s=s0Ki={1(i−1)!di−1dsi−1[(s−s0)rB(s)A(s)]}|s=s0

因果信号的单边拉普拉斯变换和傅里叶变换的关系

由于因果信号的单边拉普拉斯变换的收敛域在复平面上是一条竖线的右半开平面,收敛域σ>σ0σ>σ0。若有σ0<0σ0<0,即收敛域包含虚轴,则此时直接令拉普拉斯变换中的ss为iωiω即可得到傅里叶变换(即令ss的实部σ=0σ=0)。若有σ0>0σ0>0,则此时收敛域不包括虚轴,傅里叶变换不存在。若有σ0=0σ0=0,则此时将拉普拉斯变换作部分分式分解,必然有分式的极点位于虚轴上,此时可将其余极点不在虚轴上的部分分式作代换s→iωs→iω,而将极点位于虚轴上的部分,做逆变换求得时域形式,再作傅里叶变换(通常这部分和ε(t)ε(t)有关)。

反因果信号的双边拉普拉斯变换

现有反因果信号f(t)ε(−t)f(t)ε(−t),则f(−t)ε(t)f(−t)ε(t)为一个因果信号。求f(−t)ε(t)f(−t)ε(t)的单边拉普拉斯变换F(s)F(s)且设收敛域σ>σ2σ>σ2.则有f(t)ε(−t)⟷bF(−s)f(t)ε(−t)⟷bF(−s),收敛域σ<−σ2σ<−σ2

反因果信号的双边拉普拉斯逆变换

反因果信号及其双边拉普拉斯变换是一一对应的。现有Fb(s)Fb(s)为某反因果信号的双边拉普拉斯变换,则先求出Fb(−s)Fb(−s)的单边拉普拉斯逆变换f(t)f(t). 有f(−t)ε(−t)⟷bFb(s)f(−t)ε(−t)⟷bFb(s)

一般非因果信号的双边拉普拉斯正/逆变换

正变换:将f(t)f(t)分成因果信号与反因果信号的和,分别作双边变换,需要注意的是,收敛域为因果信号与反因果信号各自的收敛域的交集.
逆变换:将Fb(s)Fb(s)进行部分分式分解,根据给定的收敛域区分哪些分式是因果的,哪些是反因果的,分别对它们进行双边拉普拉斯逆变换.

信号与系统是一门研究信号的传输、处理和分析等问题的学科。傅里叶变换拉普拉斯变换和z变换则是信号与系统中的三种重要数学工具。下面,我们来汇总一下傅里叶变换拉普拉斯变换和z变换公式以及相关性质。 傅里叶变换公式: $$F(\omega)=\mathcal{F}\{f(t)\}=\int_{-\infty}^{\infty}f(t)e^{-j\omega t}dt$$ 逆傅里叶变换公式: $$f(t)=\mathcal{F}^{-1}\{F(\omega)\}=\frac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{j\omega t}d\omega$$ 拉普拉斯变换公式: $$F(s)=\mathcal{L}\{f(t)\}=\int_{0^-}^{\infty}f(t)e^{-st}dt$$ 逆拉普拉斯变换公式: $$f(t)=\mathcal{L}^{-1}\{F(s)\}=\frac{1}{2\pi j}\int_{\sigma-j\infty}^{\sigma+j\infty}F(s)e^{st}ds$$ z变换公式: $$F(z)=\mathcal{Z}\{f(n)\}=\sum_{n=-\infty}^{\infty}f(n)z^{-n}$$ 逆z变换公式: $$f(n)=\mathcal{Z}^{-1}\{F(z)\}=\frac{1}{2\pi j}\oint_C F(z)z^{n-1}dz$$ 傅里叶变换拉普拉斯变换、z变换的基本性质: 1. 线性性质:对于任意常数a,b,有$\mathcal{F}\{af(t)+bg(t)\}=a\mathcal{F}\{f(t)\}+b\mathcal{F}\{g(t)\}$,$\mathcal{L}\{af(t)+bg(t)\}=a\mathcal{L}\{f(t)\}+b\mathcal{L}\{g(t)\}$,$\mathcal{Z}\{af(n)+bg(n)\}=a\mathcal{Z}\{f(n)\}+b\mathcal{Z}\{g(n)\}$。 2. 平移性质:对于任意常数$a$,有$\mathcal{F}\{f(t-a)\}=e^{-j\omega a}\mathcal{F}\{f(t)\}$,$\mathcal{L}\{f(t-a)\}=e^{-sa}\mathcal{L}\{f(t)\}$,$\mathcal{Z}\{f(n-a)\}=z^{-a}\mathcal{Z}\{f(n)\}$。 3. 改变因子:对于任意常数$a$,有$\mathcal{F}\{f(at)\}=\frac{1}{|a|}\mathcal{F}\{f(t)\}$,$\mathcal{L}\{f(at)\}=\frac{1}{a}\mathcal{L}\{f(t)\}$,$\mathcal{Z}\{f(an)\}=z^{-n}\mathcal{Z}\{f(n)\}$。 4. 卷积定理:对于两个信号$f(t)$和$g(t)$,有$\mathcal{F}\{f(t)*g(t)\}=\mathcal{F}\{f(t)\}\cdot\mathcal{F}\{g(t)\}$,$\mathcal{L}\{f(t)*g(t)\}=\mathcal{L}\{f(t)\}\cdot\mathcal{L}\{g(t)\}$,$\mathcal{Z}\{f(n)*g(n)\}=\mathcal{Z}\{f(n)\}\cdot\mathcal{Z}\{g(n)\}$。 5. 能量守恒:对于信号$f(t)$或$f(n)$,有$\int_{-\infty}^{\infty}|f(t)|^2dt=\frac{1}{2\pi}\int_{-\infty}^{\infty}|F(\omega)|^2d\omega$,$\int_{0^-}^{\infty}|f(t)|^2dt=\frac{1}{2\pi j}\int_{\sigma-j\infty}^{\sigma+j\infty}|F(s)|^2ds$,$\sum_{n=-\infty}^{\infty}|f(n)|^2=\frac{1}{2\pi}\oint_C |F(z)|^2\frac{dz}{z}$。 通过傅里叶变换拉普拉斯变换和z变换公式及其相关性质,我们可以对信号进行分析和处理,从而更好地理解和设计信号与系统。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值