【解决】Spark On Yarn执行中executor内存限制问题

在Spark 1.3.1 + Hadoop 2.6-CDH5.4环境下,启动Spark SQL JDBC服务遇到executor内存不足的问题。解决办法是调整Yarn配置,将`yarn.nodemanager.resource.memory-mb`设置为executor-memory(15g)加上driver内存(512m),例如设置为16g,并确保该值高于集群的最大内存限制。此调整需同时在NodeManager和ResourceManager的配置中进行。
摘要由CSDN通过智能技术生成

[Author]:  kwu

集群版本 Spark1.3.1 + Hadoop.2.6-CDH5.4

启动Spark-SQL的JDBC服务,如下:

start-thriftserver.sh --master yarn-client --executor-memory 15g --num-executors 13 

提示内存不足

Required executor memory (xxx MB) is above the max threshold (xxx MB) of this cluster!


解决方案,修改Yarn的配置文件:

1、yarn.nodemanager.resource.memory-mb 容器内存

设置为 至少 : executor-memory(15g) + driver(512m)的内存,如上例可配置为 16g


2、yarn.scheduler.maximum-allocation-mb 最大容器内存

设置为 至少 : executor-memory(15g) + driver(512m)的内存,如上例可配置为 16g


第一个参数为NodeManager的配置 ,第二个参数为 ResourceManager的配置。


参看截图:

1) 整合在YARN中

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值