傅里叶变换、短时傅里叶变换、小波变换

顺序:傅里叶-->短时傅里叶变换-->小波变换的顺序

转载自形象易懂的傅里叶变换、短时傅里叶变换和小波变换本文作者按照傅里叶-短时傅里叶变换-小波变换的顺序,由浅到深的解释小波变换的缘由以及思路。https://mp.weixin.qq.com/s/CRqhHIlYYRjYJ64PZZnUkQ

1,傅里叶变换

        基本概念不再叙述,傅里叶变换的不足。即我们知道傅里叶变化可以分析信号的频谱,那么为什么还要提出小波变换?答案就是@方沁园所说的,“对非平稳过程,傅里叶变换有局限性”。

        如果信号的频率是随着时间变化的非平稳信号,如下图,最上边的是频率始终不变的平稳信号。而下边两个则是频率随着时间改变的非平稳信号,它们同样包含和最上信号相同频率的四个成分。

图片

        我们发现这三个时域上有巨大差异的信号,频谱(幅值谱)却非常一致。尤其是下边两个非平稳信号,我们从频谱上无法区分它们,因为它们包含的四个频率的信号的成分确实是一样的,只是出现的先后顺序不同。傅里叶变换处理非平稳信号有天生缺陷。它只能获取一段信号总体上包含哪些频率的成分,但是对各成分出现的时刻并无所知。因此时域相差很大的两个信号,可能频谱图一样。在自然界当中很多都是非平稳的信号,比如在处理生物医学信号分析等领域的论文当中,基本看不到单纯的傅里叶变化的这种方法。

        下图所示的是一个正常人的事件相关电位。对于这样的非平稳信号,只知道包含哪些频率成分是不够的,我们还想知道各个成分出现的时间。知道信号频率随时间变化的情况,各个时刻的瞬时频率及其幅值——这也就是时频分析。

图片

 2,短时傅里叶变换  short-time fourier transform STFT

        一个简单的方法就是进行加窗,又要套用方沁园同学的描述了,“把整个时域过程分解成无数个等长的小过程,每个小过程近似平稳,再傅里叶变换,就知道在哪个时间点上出现了什么频率了。”这就是短时傅里叶变换。

图片

        时域上分成一段一段做FFT,不就知道频率成分随着时间的变化情况了吗!用这样的方法,可以得到一个信号的时频图了

图片

        但是还存在窗长取多少的问题,如果框太窄,窗内的信号太短,会导致频率分析不够精准,那么频率分辨率就会比较差。如果太宽,时域分辨率就会比较差。

        解释:这个道理可以用海森堡不确定性原理来解释。类似于我们不能同时获取一个粒子的动量和位置,我们也不能同时获取信号绝对精准的时刻和频率。这也是一对不可兼得的矛盾体。我们不知道在某个瞬间哪个频率分量存在,我们知道的只能是在一个时间段内某个频带的分量存在。所以绝对意义的瞬时频率是不存在的

 

图片

图片

 

图片

        上图对同一个信号(4个频率成分)采用不同宽度的窗做STFT,结果如右图。用窄窗,时频图在时间轴上分辨率很高,几个峰基本成矩形,而用宽窗则变成了绵延的矮山。但是频率轴上,窄窗明显不如下边两个宽窗精确。

3,小波变换

        为什么不采用可变窗的STFT呢,我认为是因为这样做冗余会太严重,STFT做不到正交化,这也是它的一大缺陷。

        小波变换的出发点和STFT还是不同的。STFT是给信号加窗,分段做FFT;而小波直接把傅里叶变换的基给换了——将无限长的三角函数基换成了有限长的会衰减的小波基。这样不仅能够获取频率,还可以定位到时间了

【回顾傅里叶变换为何能够得到各个频率成分】

        傅里叶变换把无限长的三角函数作为基函数,

图片

        基函数能够进行伸缩、平移,本质上并非平移,而是正交基的分解。 缩得窄,对应高频;伸得宽,对应低频。然后这个基函数不断和信号做相乘。某一个尺度(宽窄)下乘出来的结果,就可以理解成信号所包含的当前尺度对应频率成分有多少。于是,基函数会在某些尺度下,与信号相乘得到一个很大的值,因为此时二者有一种重合关系。那么我们就知道信号包含该频率的成分多少。这一步其实是在计算信号和三角函数的相关性

        

图片

        上面的这两种尺度大小都可以乘出来一个大的值,相关度比较高,所以信号包含较多的这两个频率成分,在频谱上会在这两个频率的地方出现峰。这就是粗浅意义上的傅里叶变换。

 小波变换

        

图片

图片

 

        从该公式可以看到,和傅里叶变换是不同的,傅里叶变换的变量只有w频率,而小波变换有两个变量,尺度a——scale 以及平移量t,translation。尺度控制着小波函数的伸缩,平移量控制着小波函数的平移。尺度和频率呈现反比。平移量对应时间。

        如下图,如果伸缩平移到了这样的情况,也会相乘得到一个较大的值,和傅里叶变换不同的是,这不仅可以知道信号有这样频率的成分,而且知道它在时域上存在的具体位置

图片

        而当我们在每个尺度下都平移着和信号乘过一遍后,我们就知道信号在每个位置都包含哪些频率成分。做傅里叶变换只能得到一个频谱,做小波变换却可以得到一个时频谱!

图片

 这是小波变换得到的图像

要注意区分时域图、小波图像变换图像以及傅里叶变换得到的频谱图的差别。

小波还有一些好处,比如,我们知道对于突变信号,傅里叶变换存在吉布斯效应我们用无限长的三角函数怎么也拟合不好突变信号。突变的信号具有无穷的频率成分,比如方波和阶跃信号。

        信号采集系统只能采集一定频率范围内的信号,这将导致出现频率截断,频率截断会引起时域信号产生“振铃效应”,这个现象称之为吉布斯现象。

        信号的幅值出现变化或者完全不变化,这依赖于信号的瞬变时刻与数据采样点数的相对关系。当使用少于合适数目的频率成分来描述信号时(即,用来描述方波的三角函数的数量不够多),就会产生振铃效应。随着正弦波数量的增加,叠加后的信号越来越接近方波信号,振铃现象越来越弱,振荡的幅值越来越小,持续时间越来越短,信号的斜率越来越陡峭。

吉布斯现象解释:什么是吉布斯现象? - 知乎在测量转速时,我们经常会看到在方波脉冲的转折处信号出现明显的振荡,如图1所示。另外在进行锤击试验时,有的时候力脉冲也会在脉冲的末端位置出现振荡,如图2所示。我们已经知道力脉冲出现振荡现象称之为“振铃现…https://zhuanlan.zhihu.com/p/44515339

对于衰减的小波而言,不太一样

图片

 

        

 

 

        

 

        

 

  • 1
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值