小波分析的去噪,feature selection,回归等能力都是建立在小波分析的一种特点上:小波变换后各个正交基上的系数体现了各自的重要性,去除系数靠近零的正交基然后再变回到时域不会太大的影响时域中的距离特性。小波的这种能力使得其在Data Mining领域大显身手。
2。Data Mining方面:一般的Data Mining过程可以划分为以下四部:数据管理,数据预处理,数据挖掘核心算法,数据后处理。根据自己的经验来看,这个划分很有道理。其中的数据管理涉及到很多的数据访问、数据存储技术。有人将Wavelet用于图像数据的Indexing,那么能否用来实现文本数据的Indexing for search engine呢。我想应该是可能的,这个方面需要进行相关的试验来进行证明。
3。Wavelet for DM: 小波分析能够用于DM的两条原因是:1.小波能够提供数据表示的简洁方式,从而使得挖掘过程更加的有效的精确。2.可以嵌入到很多的既有数据挖掘算法中去,小波神经网络和小波隐马尔可夫过程就是两个很好的例子。
4。在计算机领域中使用最多的小波还是最简单的Haar小波。它能好好的用于离散信号的处理。其它的小波都是连续信号方面的处理。小波变换用于神经网络的两个方面是激活函数采用小波函数以及预处理数据时采用的时间序列数据特征挖掘。小波变换在聚类方面主要的方面是小波聚类(WaveCluster)方法,据说这种方法比常见的方法要快而且效果要好。相比于神经网络和小波的结合,分类方面中提到的小波方法多是一些以小波为主体的方法。小波变换中的母波的存在使得小波变换能够用于分型理论和技术的研究中。
5。应用于文本处理。小波分析能够得到文本流中的能量函数,这种东西对于文本篇章脉络的处理存在很大的应用前景。
Graps, Amara. "An Introduction to Wavelets." IEEE Comput. Sci. Eng. 2. 2 (1995): 50-61.
Miller, Nancy E., et al. . "Topic Islands - a Wavelet-Based Text Visualization System." IEEE
Visualization '98. Eds. David Ebert, Hans Hagen and Holly Rushmeier, 1998. 189-96.
Tao Li, et al. . "A Survey on Wavelet Applications in Data Mining." SIGKDD Explorations 4. 2 (2002): 49-68.