- 博客(39)
- 收藏
- 关注
原创 树莓派 SSH连接 “Remote side unexpectedly closed network connection”
网上有非常多应对方法尝试了无数种,没一个有用,最后偶然间发现了原因:开了远程校园VPN!!!再遇到类似问题先把所有代理都关了再试试
2022-04-29 00:56:50 5755
原创 Failed to get convolution algorithm. This is probably because cuDNN failed to initialize,
关于这个错误,这个帖子给出了完善的解释https://stackoverflow.com/questions/53698035/failed-to-get-convolution-algorithm-this-is-probably-because-cudnn-failed-to-in对于我个人情况,加入以下代码就行os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"os.environ["CUDA_VISIBLE_DEVICES"] = "0" gpu
2022-03-29 16:58:35 797
原创 【tensorflow 2】InvalidArgumentError: cannot compute XXX(tf算子) .... 数据类型错误
提示的错误tensorflow.python.framework.errors_impl.InvalidArgumentError: cannot compute SquaredDifference as input #1(zero-based) was expected to be a double tensor but is a float tensor [Op:SquaredDifference]Debug 过程单步调试后发现错误就在于一个叫 SquaredDifference 的 tf 算子
2022-03-12 20:20:27 3748
原创 import tensorflow时出现“AlreadyExistsError: Another metric with the same name already exists”
这是因为环境中的 keras与tensorflow版本不匹配,tensorflow是什么版本,keras就要是什么版本这里我就是2.6的tensorflow与2.8的keras一起用nuinstall keras,换成2.6的keras即可
2022-03-03 13:53:43 2784
原创 无法安装 tflite-model-maker + 找不到满足要求的pip包版本
想要安装 tflite-model-maker刚开始直接pip install tflite-model-maker但是出现了如下错误https://stackoverflow.com/questions/71290994/i-cant-install-tensorflow-model-maker-on-apple-silicon忘了在哪看到,反正只要将官方提供的 requirements.txt 都装上就行https://github.com/tensorflow/examples/blob
2022-03-02 19:00:43 3831 1
原创 【Android Studio JAVA】 Environment.getExternalStorageDirectory() 闪退
题目中的是老版的代码至少从安卓11起要改为 getApplicationContext().getExternalFilesDir("")(很多帖子直接写成context,但是实际上是 getApplicationContext )
2022-02-12 18:06:09 1609
原创 Android Studio Gradle同步失败 + 代理配置背后的原理
编译android project的时候需要gradle同步,墙内用户就会遇到一些包下载不下来从而导致 gradle同步失败的情况(比如我是 kotlinx-XXX下不下来)这个时候就需要配置代理,2021.3版本的AS通过打开 Tools -> SDK manager可以配置代理网上随便一搜都有很多分享如何配置Android Studio代理的帖子我参看了其中一种,成功了Android Studio 代理设置以及代理完全清除切记代理设置有用的前提是已经开了全局的VPN但是为什么要将Hos
2022-02-09 00:24:54 2425
原创 重装Android Studio显示SDK installed(但是其实并没有)
我刚开始只是win11的应用界面卸载,重装的时候到了下载SDK那一步就显示我已经installed,但是我电脑里确实没有installed,同时此问题还有一个特征:安装的时候不会问是否import user setting,直接跳过了,看来是从某个地方默认import检查C盘用户目录、原AS安装目录,%USER%/AppData/Local/等将所有含有Android的文件都删除,还是没能解决问题后来在一个帖子中发现https://stackoverflow.com/questions/2445892
2022-02-08 00:57:33 4121 6
原创 【概念解释】packet, frame,...
参考[1] Definition of Network Units: Packet, Fragment, Frame, Datagram, and Segment[2] Difference between Frame and packets in IEEE 802.111 背景不同的OSI层 & 不同的协议都有自己的 specific unitsthe packet, fragment, frame, datagram, and segment, …作为wireless领域的的phd
2022-01-05 19:53:34 1330
原创 【长期更新】科研论文写作建议
1 复旦赵斌b站主页(1)参考文献不要太多,如果已经有10篇以上文献反复提到同一个知识点,这个知识点就是行业共识,不用引用(2)文章写完后找英文润色公司(3)参考文献不要冗杂,如果一个知识点已经有超过10篇文献提到,这就是一个行业共识,不要引用(4)写完正文再写题目,用明确的结果,如《XXX提升了XXX》,代替泛泛而谈的题目,如《XXX对XXX有影响》...
2021-12-07 10:07:06 248
原创 【链接】傅里叶变换深入理解
https://panjiacheng.site/blog-others/2018/06/19/%E5%82%85%E9%87%8C%E5%8F%B6%E5%88%86%E6%9E%90/这篇文章用了很多非常形象的图,讲解了频域分析与时域分析的区别、如何理解傅里叶变换后的幅度、频率与相位https://www.cnblogs.com/ybqjymy/p/13645794.html得到幅度谱与相位谱的matlab代码幅度谱 abs,相位谱anglehttps://blog.csdn.net/shen
2021-12-01 19:28:01 1279
原创 时频分析常用工具:STFT短时傅里叶变换 & 小波变化
文章目录1 傅里叶变换的局限性2 STFT3 小波变换参考:时频分析之STFT:短时傅里叶变换的原理与实现形象易懂讲解算法I——小波变换https://www.zhihu.com/question/588149341 傅里叶变换的局限性4个不同频率的正弦信号按不同顺序组成时域信号,但是不同的时域组合信号的傅里叶变换都是一样的,FFT无法捕捉到信号在时域分布上的不同再看一组例子时域上出现了一个很明显的突变扰动,然而在频域图中,这样的变化并没有很好的被捕捉到。注意到红框中部分,显然傅里叶
2021-11-04 01:47:57 6051
原创 红米K40挂梯子影响热点
刚刚写完一篇文章上传,返现CSDN一直提示网络错误,服务器超时什么的,内容管理也进不去,以为是服务器崩了,等了好久还是这样,想玩会儿手机,发现手机梯子忘记关了,而电脑连着手机热点。将梯子关闭,发现一切都顺畅起来。以前用华为手机不会这样,不懂其中的原理,先记着。...
2021-11-02 18:16:22 4932 1
原创 【文献精读】HeadFi: Bringing Intelligence to All Headphones
文章地址:https://dl.acm.org/doi/10.1145/3447993.3448624文章目录1 简述2 背景3 headfi实现基础3.1 耦合效应模型3.1.1 耳机中声电信号如何转化?3.1.2 为什么微小电压变化能够作为传感器输入3.2 精确测量电压 Null Measurement3.2.1 什么是惠斯通电桥3.2.2 惠斯通电桥中的C1从何而来?3.2.3 一对耳机阻抗互为C1可能引发的问题3.3 电路图4 基础评估4.1 直接激励信号测量敏感性测试4.2 间接激励信号测量敏感
2021-11-02 18:06:09 5308 5
原创 Peak Detection 算法
文章目录背景只有一个peak找多个Peak主要参考:https://www.baeldung.com/cs/signal-peak-detection背景最近在利用CIR估计结果进行解卷积从而抵消信道的卷积影响,在这过程种,发现对于CIR估计结果的截取非常重要。估计出来的CIR可能是含有相对时延和一段接近零的“尾巴”,但是我们需要的值只是第一个peak到最后一个peak这一段范围(下图多径不明显,只有一个突出的Peak,那需要的就是这一个peak附近的大概十几个采样点)刚开始为了检验idea我是先
2021-11-01 17:46:05 1335
原创 FFT两种长度对齐方法比较
文章目录问题背景长度统一方法3种卷积计算方法矩阵法解卷积问题背景此问题是在频域解卷积时遇到的长度统一方法在没有噪声时,这两种方法的效果一样,都能正确接卷积出ht,但是如果加了噪声(我实验时加的高斯白噪声),方法1的正确率会比方法2高,这是为什么呢?在解释之前,需要先了解一下卷积计算三种方法3种卷积计算方法矩阵法解卷积上面是用傅里叶变换的方法解卷积,还可以用矩阵法解卷积,用这种方法解卷积时就可以明白两种长度对齐方法的区别...
2021-10-16 21:25:38 443
原创 【matlab】简易声音通信系统
文章目录简介调制发送与接收同步解调简介本文章介绍了一个简易的用matlab写的声音通信系统主要由如下部分组成:调制 -> 发送接收 -> 同步 -> 解调调制首先一个实际的通信系统在调制之前应该还有编码+码元划分的过程,但是因为这里只是简单的过一遍声音通信系统的流程,尽量只保留核心部分,因此在随机生成码元之后,就直接开始调制了。在本系统中,我们设定 1 symbol(码元) = 2 bit ,那么一个码元的取值就有 0 1 2 3四种情况,% 系统参数设置symbols_
2021-10-15 14:36:11 1267
原创 利用卷积定理进行信道估计 + 深入探究 DFT 与 matlab 中的 fft 用法
文章目录1 背景2 DFT & FFT 公式级别解析2.1 DFT / IDFT2.2 FFT3 利用卷积定理进行信道估计1 背景最近尝试用时域卷积定理来进行信道估计假设 TX信号为 s(t),信道脉冲响应(CIR)为 h(t),那么RX信号 y(t) = s(t) * h(t)根据时域卷积定理,时域卷积的傅里叶变换,等于各自傅里叶变换的乘积因此,在已知 s(t) 和 y(t) 的前提下, 可以通过 Y(f) / S(f) 来获得 H(f),然后再进行傅里叶逆变换,就可以得到 h(t)用
2021-10-10 03:22:01 1854
原创 【文献笔记】【部分精读】【CIR】Angle of Arrival Estimation based on Channel Impulse Response Measurements
文章地址:https://ieeexplore.ieee.org/document/8967562机器人顶会iros的一篇文章,我主要关注其关于CIR估计的部分文章目录我的理解CIR估计与AOA估计的关系CIR测量方法(重点)推导CIR公式CIR测量方法我的理解有一种室内定位技术叫做ultra-wideband radio technology,其精度受限于天线的一些不理想特性,很多人想通过提升天线设计来提升精度,但是作者从另一个角度入手,反其道而行之,通过放大天线的不理想特性来做到达角AOA的评估
2021-09-20 18:04:15 2052
原创 【错误日志】【vscode】import numpy 失败:DLL load failed
错误原因:shell 打开失败,导致 conda activate 失败,没有环境,自然没有 numpy解决:在 settings.json 中加入: "terminal.integrated.profiles.windows":{ "PowerShell": { "source": "PowerShell", "icon": "terminal-powershell" }, "Command Prompt
2021-09-16 23:49:57 327
原创 【文献笔记】【通信】MAVL: Multiresolution Analysis of Voice Localization
文章地址:MAVL: Multiresolution Analysis of Voice Localization这是2021年春季刚发的文章类似的文献笔记:【文献精读】【通信】Symphony: Localizing Multiple Acoustic Sources with a Single Microphone Array常见术语:AoA:到达信道的角度(也就是 DoA)xH:x的共轭转置文章目录Insight1 Introduction2 Primer on AoA Estima
2021-09-01 18:35:23 1196
原创 【实践】多径效应CIR估计
这周最紧要任务,写多径效应的CIR估计,故将思路历程收集于一个 blog 中,以供今后参考文章目录1 题目解读2 信道估计初探2.1 基于训练符号的信道估计Reference1 题目解读首先这个任务题目就看不懂,啥叫 CIR估计?问了学姐,是信道脉冲响应,突然联想到之前一直听说的信道估计,百度百科对于信道估计的解释是:所谓信道估计,就是从接收数据中将假定的某个信道模型的模型参数估计出来的过程。如果信道是线性的话,那么信道估计就是对系统冲激响应进行估计。需强调的是信道估计是信道对输入信号影响的一种
2021-09-01 18:34:57 6960 3
原创 【代码库】【通信】各调制方式编程实现
将各种调制方式的代码集中一下,随时更新,应该大部分都是 python文章目录OFDMOFDM输入的待调制信号一般用一个矩阵表示[M, N]其中,M(行数)表示 symbol数量,N(列数)表示一个symbol中的码元数量(一个码元可能有n位,即2**n进制)比如说5个symbol,每个symbol 有4个码元,且码元是四进制的(值为 00, 01, 10, 11, 也就是 0, 1, 2 ,3),那么这个矩阵就为012310233102210
2021-08-30 21:38:52 397
原创 【文献精读】【通信】Symphony: Localizing Multiple Acoustic Sources with a Single Microphone Array
文章地址:Symphony: Localizing Multiple Acoustic Sources with a Single Microphone Array无源码文章目录Insight1 INTRODUCTION2 PRIMER3 SYMPHONY OVERVIEW4 PROPAGATION MODEL5 DOA ESTIMATION5.1 Geometry-Based Filtering of DoA5.2 Coherence-Based Refinement of DoA6 DOA REC
2021-08-29 20:44:03 1574
原创 【工具】【git】如何使用git管理项目
网络上有很多git教程,但是东一块西一块,每次要搜很麻烦,于是自己写一个 blog 记录最适合自己的 git 用法文章目录前提条件建立仓库在本地管理项目前提条件电脑上需要安装 git,这个随便一搜都是教程,安装包下载后我记得也是傻瓜式安装反正最后能打开 git bash就行建立仓库进入gtihub官网,登录,然后左边就会出现自己的仓库列表,点击 new就开始创建一个新的 repo填完该填的,点 Create repository,就创建了自己的项目在本地管理项目...
2021-08-26 15:19:05 328
原创 为什么要有基于NN的通信系统?
这几天读了一些关于利用NN进行抗干扰通信的paper【文献笔记】【精读】An Introduction to Deep Learning for the Physical Layer【文献笔记】【精读】Deep Learning-Based Communication Over the Air刚才与老师交流,突然有了更清晰的理解,于是赶紧记录下来经常看到正交这个概念,比如正交错误检测,那么什么叫正交?正交本质就是互不干扰,比如对于一个正弦波来说,频率和幅度就是正交的两个纬度,因为它们互不干扰嘛,所
2021-08-23 22:07:02 344
原创 【文献笔记】【精读】Metamorph: Injecting Inaudible Commands into Over-the-air V oice Controlled Systems
文章地址:Metamorph: Injecting Inaudible Commands into Over-the-air V oice Controlled Systems不开源发现定会的论文格式都一个样前言介绍+系统设计说明+系统性能评估+相关工作综述+结论文章目录Insight1 INTRODUCTION2 PRELIMINARIES3 DESIGN4 EVALUATION5 RELATED WORK6 CONCLUSIONInsight作者探究了利用声音通信远程攻击神经网络的可能性1
2021-08-23 15:10:25 482 1
原创 【文献笔记】【精读】Near-Ultrasound Communication for TV’s 2nd Screen Services
文章地址:Near-Ultrasound Communication for TV’s 2nd Screen Services不开源文章目录Insight1 INTRODUCTION2 TARGET APPLICATION3 REAL WORLD CHALLENGES AND OUR SOLUTION3.1 Low Volume Transmission3.1.1 Strict low Tx power requirement3.1.2 Guard interval overhead3.1.3 Chir
2021-08-23 14:16:49 708
原创 【文献笔记】【精读】Messages Behind the Sound: Real-Time Hidden Acoustic Signal Capture with Smartphones
文章地址:Messages Behind the Sound: Real-Time Hidden Acoustic Signal Capture with Smartphones开头震惊,这篇的工作也太solid了吧,整目录就给????整懵了文章目录Insight分段分析1 Introduction2 Background2.1 Human Auditory System2.2 Speaker and Smartphone Microphone3 THE ACOUSTIC SPEAKER-MICRO
2021-08-23 02:16:40 508
原创 【文献笔记】【精读】LEARNING TO PROTECT COMMUNICATIONS WITH ADVERSARIAL NEURAL CRYPTOGRAPHY
文章目录1 主要贡献1.1 背景1 主要贡献证明了神经网络可以在指定策略下保护神经网络之间的通信。1.1 背景密码学中的 attacker 有着复杂度以及成功率方面的限制。在密码学中如果一个 mechanism 能够抵御所有 attacker 的攻击,那么我们就可以说它是安全的,也就是说没有 attacker 能够从密文中提取出明文。如何使用 GAN 来保护通信?论文中如是说:In this latter context, the adversaries are neural network
2021-08-17 15:00:28 993 1
原创 【文献笔记】【精读】Deep Learning-Based Communication Over the Air
文章地址:Deep Learning-Based Communication Over the Air文章目录1 主要贡献2 分段分析2.1 INTRODUCTION2.2 END-TO-END LEARNING OF COMMUNICATIONS SYSTEMS2.2.1 The autoencoder concept2.2.2 Challenges related to hardware implementation2.3 IMPLEMENTATION2.3.1 Two-phase training
2021-08-17 15:00:15 1417 1
原创 【文献笔记】【精读】An Introduction to Deep Learning for the Physical Layer
文章地址:An Introduction to Deep Learning for the Physical Layer其余相关blog参考:【文献学习】An Introduction to Deep Learning for the Physical LayerAn Introduction to Deep Learning for the PhysicalLayer注意,本文一些主观的看法可能是错误的,它们都会以像这样两条线的形式框出,希望读者不要被误导概述这是一篇关于深度学习方法在通
2021-08-09 11:31:16 2773 7
原创 【工程环境】win10下使用cgit加快git clone
项目地址:https://gitee.com/killf/cgit#http://cgit.killf.info/cgit.exe先下载项目,然后执行以下步骤step 1: cmakecgit只提供了linux和mac的预编译安装,win10下需要自己编译源码编译源码三部曲mkdir buildcd buildcmake ..makemake install第一部cmake就卡住了,我电脑没装cmake参考:windows下cmake安装使用傻瓜式安装step 2: makem
2021-08-08 11:05:50 525 1
原创 【知识点】IQ调制 IQ数据 星座图
将以下链接依次看完,就能明白IQ调试通信里 星座图 到底是什么意思啊?【通信原理 入坑之路】—— 详解IQ调制以及星座图原理什么是IQ调制,为什么要用IQ调制?什么是高阶调制数字调制系列:如何理解IQ ?(转载)用Matlab复现了第一个知乎链接中给出的代码,存放于https://github.com/ndwuhuangwei/py-radio-autoencoder,注释十分详细...
2021-08-07 20:04:17 1904
原创 【知识点】通信中的反向散射技术
参考论文: 反向散射通信技术与物联网传统反向散射技术如RFID,应用于商品识别、停车场收费系统等在要识别的物体上加标签,然后向其发射射频信号,根据反射回来的信号进行判断
2021-08-07 12:19:07 6770
原创 merlin工具包+语音合成TTS技术调研
merlin官方github: merlin前言大二时做比赛从github上扒了爱丁堡大学某语音实验室做出来的toolkit叫merlin,当时啥也不会,不懂python也不懂ubuntu。因为啥都不会没人愿意和自己组队,一怒之下找了其他学院的高中同学凑数,然后一个人花了一个月的时间才把merlin在自己电脑上勉强训练起来并能生成语音。虽然现在想想当时就抄这么一个玩意儿居然花了100+小时,还通宵了好几次觉得不可理喻,但是u1s1,这绝对是我大学期间最骄傲也最充实的一段时期。经历了这次独立的出了成果的
2021-06-28 03:16:02 707
原创 【知识点】机器学习降维方法
参考文章:打破“维度的诅咒”,机器学习降维大法好为什么数据需要降维机器模型用来帮忙预测一个目标变量,但是不一定输入图像的每一个特征都对应目标变量,这会使模型变得复杂。这里所说的降维的纬度,就是图像的特征,对于图像分类模型来说,一个像素点就是一个特征降维技术1 特征选择实用python的 scikit-learn库,使用散点图和热图来可视化不同特征的协方差,如果有高度相同的特征,就只留一个。你可能会发现,在你的数据集的25个特征中,有7个对目标变量的影响占到了95%。所以能够删除18个特征,使机
2021-06-28 01:57:26 279
原创 【知识点】神经网络输入归一化区别:[0, 1]和[-1, 1]
1 前置知识1.1 ReLU的单侧抑制参考:RELU的单侧抑制单侧抑制含义:relu的曲线是一个折线,在小于0的部分一直为0,而在大于0的部分是一条斜率为1的直线。单侧抑制的优点:使得部分神经元可能输出为0,相当于在本次优化中,一些神经元不参与,进而破坏了全部神经元联动优化的陷阱,使得模型更加的鲁棒。所谓破坏联动优化陷阱,我的理解是类似于Dropout(如果模型参数过多,而训练样本过少,容易陷入过拟合。过拟合的表现主要是:在训练数据集上loss比较小,准确率比较高,但是在测试数据上loss比较大
2021-06-08 01:38:56 6641
原创 【文献笔记】【精读】MobileNet V1
文章目录1 论文结构2 研究的问题3 文献综述3.1 当前(2017)已有的DNN的问题3.2 当前已有的网络轻量化的方法4 MobileNet 简介4.1 本网络创新点4.2 本网络优点5 MobileNet 详解5.1 the core layers: depthwise separable filters5.2 计算代价(computational cost)是怎么算出来的?5.2.1 一个标准卷积层的计算过程到底是怎样的5.2.2 depthwise separable convolution 与
2021-04-05 09:56:04 1084 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人