诺奖终属黑洞理论-IT与物理的相互成就

 

 

2020年诺贝尔物理学奖颁给了罗杰·彭罗斯(Roger Penrose),因他发现黑洞形成是广义相对论的一个预言;莱因哈特·根策尔(Reinhard Genzel),安德烈娅·盖兹(Andrea Ghez),因他们发现银河系中心的超大质量致密天体。

 

笔者认为霍金在世,肯定会获得今年的诺奖,从近年诺奖的调性来看,是十分偏向于实证的,而对于纯理论研究不太友好。比如之前几年的诺奖中无论是激光物理、LED,还是拓扑相变,都是属于实证研究,而其中LED与拓扑(也就是超导)还都是已经拥有了广泛的应用了。而上次给理论研究成果颁奖还要追溯到2013年-希格斯波色子的观测发现。

不过随着大数据处理能力的不断加持,使人类可以将多个观测设备的数据进行关联计算,得出比之前精确得多的结论,这使得我们先是通过LIGO观测到了引力波,又在2019年拍摄到了黑洞真实的照片。这也不但使得黑洞被实际观测证实了,而且从侧面证明了黑洞辐射也就是霍金辐射的存在。这也是霍金如果活着必获诺奖的原因。不过今年这三位获奖也是实至名归,对于黑洞的存在,他们分别贡献了无可争议的理论预言和无可置疑的观测证据

黑洞无法直接观测,但可以借由间接方式得知其存在与质量,并且观测到它对其他事物的影响。借由物体被吸入之前的因黑洞引力带来的加速度导致的摩擦而放出x射线和γ射线的“边缘讯息”,来确定黑洞是否真实存在,而在黑洞照片问世之前,有关黑洞的研究是不可能获诺奖的,而有关黑洞的实际观测研究又是如何在大数据技术的加持下,测量引力波,拍摄黑洞照片,这一切还要从迈克尔逊-莫雷干涉仪讲起。

LIGO前身-迈克尔逊-莫雷干涉仪

在一百多年前的上世纪初叶,当时人们认为光的传播介质是“以太”。由此产生了一个新的问题:地球以每秒30公里的速度绕太阳运动,就必须会遇到每秒30公里的“以太风”迎面吹来,同时,它也必须对光的传播产生影响。这个问题的产生,引起人们去探讨“以太风”存在与否。迈克耳孙-莫雷实验就是在这个基础上进行的。

 

如图所示,实验仪器可简化为一个光源,两个反光镜,一个分光镜和一个观测屏。其中分光镜的作用是可以将光源发出的光分成强度相等两部分,一部分可以透过分光镜并沿原先的方向一直到达反光镜M1,另一部分则会被反射,沿与原先方向垂直的方向到达M2。经过M1,M2反射之后又都回到分光镜,分光镜再次分光,这时M1反射回来的光会有一部分被分光镜反射到观测屏上,而M2反射回来的光也会有一部分被分光镜透射到观测屏上。因为分光镜到M1,M2的距离(设为d)相等,并且到达观测屏的两束光线都经过了一次分光镜的反射,一次分光镜的透射,一次反光镜的反射。因此如果实验仪器是绝对静止的话,那么到达观测屏上时两束光的光程应该是完全相等的。

可是如果按照当时的理论,地球相对以太是有速度的,那么实验仪器就不是绝对静止的。我们假设光相对以太的速度为c,地球相对以太的运动的速度为v,并且与光源到M1的方向相同,那么根据伽利略速度叠加原理,就能得到刚经过分光镜透射和到达反光镜M1之前的这段时间里,假设装置在以太中向右以速度v运动,且从部分镀银的玻璃片到两面镜子的距离为L,那么向右的那一束光在向右的过程中相对装置速度为c− v,花费的时间t1= L/ (c− v),返回时速度为c+ v,时间t2= L/ (c+ v)。

而对于向上的那一束光,设它到达镜子所需的时间为t3,在这段时间里镜子向右移动了vt3,所以光走过的路程是一个直角三角形的斜边,于是有

由此可得

而返回时间与此相同,所以总时间

因为两束光是同一光源产生的,光程差又是定值,因此在观测屏上应当发生光的干涉,产生干涉条纹。如果这时旋转实验仪器,那么两束光相对地球的速度就会发生改变,因此光程差也会改变,那么产生的干涉条纹就会发生移动。而我们就可以通过条纹的移动来确定地球相对以太得速度是多少。但是实验结果却很让人失望和震惊:无论怎么旋转实验仪器,两束光线都没有显示出时间差。迈克尔逊和莫雷又进行了多次实验,可依然是否定的结果,后续的实验也只能无奈地取消,并宣告实验“失败”。这时候人们也提出了一些猜想,企图完善以太学说,解释这个实验的现象。

有人说地球相对以太是静止的,导致这个实验没有得出任何结果。但这与“地心说”似乎有着一样的色彩,都是把地球放在了宇宙中心。这与当时的主流认知是完全违背的,况且地球还有自转,因此这个假设并没有得到人们的支持。还有人提出地球的运动会拖曳这以太运动,致使地球相对周围的以太是静止的。但是地球究竟如何拖曳着以太运动,并且拖曳时为什么不损失能量等等问题都没法作出解答,因此也没有得到人们的认可。

不过这一切被后来爱因斯坦的《论动体的电动力学》中所提出的狭义相对论所解释,他指出,一切惯性参考系都是等价的,并且光在真空中相对于任何惯性参考系其速度不变,还提出了一系列基于此的推论。爱因斯坦提出的时空观冲击了人类有历史记录以来未曾变过的时空观,人们一时无法接受,不过最终无数实验证明他的狭义相对论是对的。后来爱因斯坦又提出了更让人震惊的广义相对论。在广义相对论的描述下,有质量的物体会使得周围的时空发生扭曲。倘若物体发生运动,比如两个天体围绕着对方互相旋转,那么就会使周围的时空产生“时空涟漪”,就像被”扭曲“的水面会产生水波向外扩散,而这种“时空涟漪”就是我们所谈论的引力波。

 

引力波终被捕捉,LIGO功不可没

虽然人们通过实验验证了很多广义相对论的内容,但是引力波的预言一直没有人证实,一直到LIGO出现才完成了对引力波的成功捕捉。而探测出黑洞引力波的神器,当今最具规模的激光干涉引力波天文台(LIGO)其实就是一个巨大的主要是迈克尔逊干涉仪,LIGO由加州理工学院和麻省理工学院负责运行,也是美国国家科学基金会资助的最大科研项目之一。

LIGO在两个站点建造有三台探测器,在华盛顿州的汉福德(Hanford)建有双臂长度分别为4千米和2千米的两台探测器(LIGO Hanford Observatory,简称LHO),而在路易斯安那州的利文斯顿建有一台双臂长度为4千米的探测器(LIGO Livingston Observatory,简称LLO),相距汉福德3002千米。LIGO采用了多种尖端科技。LIGO的防震系统能够压抑各种震动噪声,真空系统是全世界最大与最纯的系统之一,光学器件具备前所未有的精确度,能够测量比质子尺寸还小一千倍的位移,并与大数据结合,使LIGO的电算设施足以处理庞大实验数据。2002年起,LIGO正式启动数据采集工作,至2010年共执行了六次科学探测工作之后计划结束,最佳灵敏度已经达到10的数量级。

2009至2010年,LIGO升级为Enhanced LIGO并进行了第六次科学探测,即S6。其激光功率从10瓦特提高到30瓦特以上,探测范围可扩大8倍。在2010年与2015年之间,LIGO进行了名为“先进LIGO”(Advanced LIGO)的升级计划,简称aLIGO。2015年,aLIGO正式投入使用,激光功率从初始版LIGO的10瓦特提升至200瓦特左右,探测频带下限从40Hz延伸到10Hz,灵敏度比初始版LIGO高出10倍,这意味着aLIGO能够探测引力波的距离比先前高出10倍,探测范围也扩大1000倍以上,能够探测到的可能引力波波源比先前多出1000倍。

 

黑洞面纱终于揭开,诺奖只是时间问题

 

正如我们前文所说,诺奖对于未经实证的纯理论研究并不算友好,不过当人们真正把拍摄了黑洞的照片之后,那么有关黑洞研究获得诺奖就只是时间问题了。

由于黑洞强大的吸引力,即使是光落后黑洞的事件视界之内也无法逃逸,但是霍金的黑洞辐射理论也预言了黑洞周围的如华彩般炫丽的吸积盘。一般来说我们给一个物体拍相片,是指通过采集这个物体向身辐射或者反射其它发光体的光线来对它呈像,但由于黑洞的特殊性,而这次的照片并没有黑洞的正脸。

   根据爱因斯坦广义相对论,凡是有质量的物体都会对空间有弯曲的效应,质量越大弯曲效应就越明显。

 

   那么如果一个物体密度特别大,那么他就可以将周围的空间压成一团,360度不留任何死角的拦截任何想要逃逸出去的粒子,那么此时这个物体就塌缩成了一个黑洞,而黑洞的边缘则称为黑洞的事件视界,事件视界阻止其内部任何物体的逃逸行为。

 

   如果把黑洞比成一位神秘的新娘,那么她一定十分高冷,举例来说,一个与太阳质量相当的黑洞的温度仅有60nK,温度极低,但是由于其巨大的吸引力,使经过他的物体全部被深深的吸引,无法轻易的转身离开。吸积盘就是由黑洞周围的弥散物质组成的、围绕黑洞中心体转动的存在。吸引盘就像紧紧围绕在新娘周围的人群,他们为了一探新娘的芳容而聚集在她身边,不断的转动,不断的靠近,这里人头攢动,热力非凡。由于物质间的不断摩擦,吸积盘上的温度可比黑洞的高多了,他正像是婚礼现场的炫丽灯火,将整个现场照亮。

 

   当然黑洞温度虽低却也不是完全不发光发热的,根据量子理论在空间中总是会不断的产生正反粒子,然后正反粒子会相互结合并湮灭为空,而如果成对的正反粒子恰子在黑洞的事件视界上被产生出来,其中一个粒子会坠入黑洞永远不会再出来,而另一个粒子,由于其在视界边缘的逃离速度恰恰就等于光速,所以能幸运的逃离出来,从而产生这种黑洞辐射。

   而人类做在远处的观测者,几乎拍不到黑洞辐射本身的呈像,只能通过吸积带产生的强烈热辐射效应来一窥黑洞的究竟。不过给黑洞拍照依旧非常难,因为可观测的黑洞离地球都太远了,而去年人类拍摄到的黑洞相片中来自于M87,她位于室女座方向的一个巨椭圆星系,距离我们约5500万光年,M87中心有一个超大质量黑洞(现在按银心黑洞的命名习惯被称为M87*),其质量约为65亿倍太阳质量。

   M87*的优点是其吸积盘活动非常强,质量也很大,不过这个黑洞离我们真的非常远。所以拍照又用到了“甚长基线干涉测量”(VLBI)技术,从VLBI的设计思想中明显能看到大数据技术的影子,我们如果在同一时间在不同位置观测同一物体,那么各观测值与各观测地点都会呈现出特定的几何关系,那么利用各观测值间的关系对于真实值进行更精准的估计。

物理与IT技术的相互成就

   黑洞拍照用到的望远镜EHT(Event Horizon Telescope,EHT)实际是由8个射电望远镜组成的虚拟望远镜,它们分别是:南极望远镜(SPT)、智利的阿塔卡马大型毫米波阵(ALMA)、智利的阿塔卡马探路者实验望远镜(APEX)、墨西哥的大型毫米波望远镜(LMT)、美国亚利桑那州的亚毫米望远镜(SMT)、美国夏威夷的亚毫米望远镜(SMA)、美国夏威夷的麦克斯韦望远镜(JCMT),以及西班牙射电天文台的30米口径毫米波望远镜(IRAM)。正是这8台望远镜被同一原子钟精确授时并保证同步,并利用大数据处理技术,形成了一个巨大的虚拟望远镜,才完成了给黑洞拍照这个不可能完成的任务。这刚好也是它下一个观测目标,银河系中心人马座A,所需要的数据处理能力还要更高。

而无论是是LIGO的大数据技术,还是黑洞拍摄用到的天文望远镜阵列,物理与IT的结合已经成为一种趋势,比如在我国的贵州有这么一个神器FAST中国天眼射电望远镜。

 

FAST是一款500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical Telescope),简称FAST, “天眼”由主动反射面系统、馈源支撑系统、测量与控制系统、接收机与终端及观测基地等几大部分构成,从公开资料上看,像天眼这种级别的射电望远镜,每天产生的观测数据即使是压缩以后,也高达50TB,那么由此推断参与黑洞拍摄的天文望远镜的数据观测量也基本可以在TB级别,可以说天文观测所带来的信息量也同样是天文量级的,从这之中生成黑洞的照片,也就意味着巨大的人力、算力乃至运营成本,如何低成本,高效率地处理采集到的海量信息,无疑是摆在天文学家面前的最棘手问题。

早些年, NASA科学家曾努力地向大众科普天文知识,还放出大把精心处理过的黑洞、星空照片,就为了让“看星星”这件事显得更有趣一些,进而获得国会的经费支持。其实,天体物理学是一门由数据驱动的科学,与人工智能IT技术的结合,往往会取得意想不到的效果,在深度学习还没“火”起来的20多年前,国家天文台就已经开始利用深度学习来进行太阳黑子的活动预测了。总结一下天文科学方面的系统需求主要有以下两点点:

信息聚类分析:其工作本质在于分类整理,并找出背后的联系,而宇宙中的电磁信号无处不在,它展现出的周期规律,背后很可能只是“脉冲星”,不断发出电磁信号。而脉冲星就像大海航行的灯塔一样,可以帮助我们确定“坐标”,确定分析锚点。

结果数据传输:与此同时,深度学习所依赖的大量信息如何传送也是一大难事。在研究机构尚未采用云计算技术时,如果有传送数据的需求,就只能靠天文研究人员背着硬盘“人肉搬运“。但在中国虚拟天文台上云项目完成以后,无论是数据处理、传输,还是存储、分享,种种难题都如同快刀斩乱麻一般轻松解决。

不过,想处理如此大规模的数据,于算力也有着迫切需求,因此当时只能采用大型实体超算来进行,这不但成本巨大,运算效果却未必理想。得益于我国IT技术尤其是云计算技术的快速发展,给予天体物理研究以强大的支持,基于阿里的飞天超大规模通用计算操作系统,将百万级服务器连接成一台“超算”,打造了“全球天文资源平台”,不但全球天体物理学家提供了包括FAST天眼在内的数据支持,还利用其提供的算力进行处理,效率能够提高20多倍。原来需要花费7天才能处理完的量,如今只需花费8小时;产品生成周期也缩短9倍,从以前的180天缩短到了20天。

 

人类在探索星辰大海的过程中,往往都会收获意外的礼物。比如澳大利亚物理学家约翰·奥萨立文发明了目前很多年轻人的——Wi-Fi;英国物理学家、诺贝尔奖获主的马蒂莱尔发明了综合孔径成像,这个技术也被利用到了医学上,也就是CT、核磁共振与PET发射端侧扫瞄。而且由于数据量大,相似图片多,天体物理学家还为我们贡献了很多高精度的图像识别算法;可以说物理研究会将技术成果反哺给全社会,进入我们的日常生活。也愿我国能在探索星辰大海方面更上一层楼,取得突破进展。

 

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值