记录一下自己在调整yolo网络时遇到的报错cv2.error: Caught error in DataLoader worker process 0.【已解决】

报错记录后面详细报错是在augment.py里面的LetterBox函数

报错内容如下

cv2.error: OpenCV(4.10.0) D:\a\opencv-python\opencv-python\opencv\modules\core\src\copy.cpp:1074: error: (-215:Assertion failed) value[0] == value[1] && value[0] == value[2] && value[0] == value[3] in function 'cv::copyMakeBorder’

查询后得知是图像在四周拓展时调用的copyMakeBorder报错,具体内容为拓展四个方向的数字大小不同,即top, bottom, left, right

尝试打印img.size和top, bottom, left, right后发现并没有报错内容所说的问题,四个参数始终相等。

解决方案

既然copyMakeBorder有问题,而且实际这个函数的操作与pad相同,尝试使用np下的pad做同样的操作后就不报错了

虽然解决了,但始终没弄明白为什么报错,而且将上面调用copyMakeBorder的代码注释掉后仍能跑通,推测是cv2内部不知道有什么问题。希望有懂行的大佬解答一下这个疑问。

顺带一提,把这段注释掉后会导致预测框位置有问题从而导致检测的准确率十分低。

### 解决YOLOv8验证张量维度不匹配问题 在处理YOLOv8验证过程中遇到的`RuntimeError: The size of tensor a (80) must match the size of tensor b (84)`错误,主要源于模型预期的输出尺寸与实际数据集中的目标框标签尺寸不符。此情况类似于其他框架中因类别数或图像尺寸设置不当引发的问题[^3]。 #### 错误原因分析 - **类别数量差异**:假设训练配置设定的目标分类数目为80类(含背景),但在验证集中存在额外的4种类别,这将导致维度冲突。 - **图像分辨率适配不良**:如果验证图片经过缩放或其他变换后未能保持原始比例,可能导致特征映射层输出的空间维度发生变化,进而影响后续操作如锚点分配等过程中的张量形状一致性校验失败。 #### 解决策略 针对上述两种可能性,建议采取如下措施: 1. **确认并统一类别定义** - 审查项目内所有涉及类别索引的地方,确保训练和测试/验证阶段使用的类别列表完全相同。 - 修改配置文件中关于`nc`参数(number of classes)以及对应权重初始化部分的相关数值至正确的类别总数加一(考虑背景类)。 2. **调整输入图像规格** - 对于特定的数据集如BSD68,需预先检查其样本特性,并据此实施必要的预处理步骤以满足网络架构的要求。例如,当采用具有固定步幅卷积核的设计,应保证输入图像宽度高度均为指定因子(此处可能是4)的倍数[^1]。 - 使用适当的插值方法重设图像大小到最接近的理想尺寸而不改变长宽比,或者通过裁切去除边缘区域来实现这一点。 ```python import cv2 def preprocess_image(image_path, target_size=(640, 640)): img = cv2.imread(image_path) h, w = img.shape[:2] # Calculate scaling factor while preserving aspect ratio r = min(target_size[0]/h, target_size[1]/w) new_unpad = int(round(w * r)), int(round(h * r)) dw = (target_size[1] - new_unpad[0]) % 4 # Ensure width divisible by 4 dh = (target_size[0] - new_unpad[1]) % 4 # Ensure height divisible by 4 top, bottom = dh//2, dh-(dh//2) left, right = dw//2, dw-(dw//2) resized_img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) padded_img = cv2.copyMakeBorder(resized_img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=[0, 0, 0]) return padded_img ``` 3. **更新标注信息** - 如果确实是因为增加了新的物体类型而导致了类别计数增加,则除了同步修改模型外,还需相应地修正现有的ground truth标记文档,使其反映最新的分类体系。 完成以上更改之后再次尝试运行验证流程,观察是否解决了原有的张量尺寸不兼容问题。同注意保存好每次实验的日志记录以便追溯调试历史。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值