TypeError: Caught TypeError in DataLoader worker process 0. TypeError: ‘NoneType‘ object is not sub_

使用pytorch 进行train 出现TypeError: Caught TypeError in DataLoader worker process 0. TypeError: 'NoneType' object is not sub_

两个错误,解决办法。

第一步:分析错误原因

我们可以看到第一个错误是关于DataLoader进行训练数据的存取工作线程的问题,

第二个问题可以看出是对象不存在,没有这个类型。也就是说函数可能读取不到数据。

第二步:解决问题

首先,我们由第二个问题可以确定一下是否是路径的问题,常常因为一些特殊符号导致路径出现问题

多进程问题可能由于内存的原因导致出现错误,可以将进程改为单进程,

dataloader = torch.utils.data.DataLoader(
        dataset,
        batch_size=opt.batch_size,
        shuffle=True,
        num_workers=opt.work,
        pin_memory=True,
        collate_fn=dataset.3dffa,
    )
将num_workers=opt.work改为num_workers=1

 

这个错误表示在DataLoader的工作进程1中捕获到了TypeError类型的错误。DataLoader是一个PyTorch库中用于数据加载和批处理的工具,它可以在训练模型时提供有效的数据流。此错误的出现通常是因为在数据加载过程中出现了类型错误。 类型错误表示在代码中使用了错误的数据类型或进行了不支持的操作。在DataLoader的工作进程1中,可能使用了不兼容的数据类型或进行了无效的操作,导致了这个错误的发生。要解决这个问题,以下是一些可能的解决方案: 1. 检查输入数据的类型:确保输入给DataLoader的数据是正确的类型。比如,如果需要的是张量(Tensor)类型的数据,确保输入的数据是张量而不是其它类型的对象。 2. 检查数据预处理过程:如果在数据预处理过程中使用到了一些运算或操作,确保这些操作是针对数据类型有效的。如果需要对数据进行转换或处理,确保转换的操作适用于数据的类型。 3. 更新PyTorch版本:有时,该错误是由于PyTorch库本身中的一些问题引起的。尝试使用更新的PyTorch版本,可以解决此错误。 4. 检查数据加载的步骤:确保数据加载的过程中没有出现错误。可能是文件读取、数据分割或数据转换等步骤出现了问题,导致了类型错误的发生。 总结来说,要解决"TypeError: Caught TypeError in DataLoader worker process 1."的错误,你需要仔细检查代码中的数据类型问题。确保正确使用了适当的数据类型,检查数据的预处理过程,更新PyTorch版本或者检查数据加载的步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值