张贤同学
码龄10年
  • 26,201
    被访问
  • 43
    原创
  • 726,181
    排名
  • 92
    粉丝
  • 0
    铁粉
关注
提问 私信

个人简介:在读研究生,热爱技术,做过Android、嵌入式。现在研究但不限于:java、Android、Deep Learning、GCN。 联系邮箱:zhangxian_tech@163.com 博客地址:blog.zhangxiann.com 公众号:【张贤同学】

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2012-10-04
博客简介:

张贤的博客

博客描述:
记录学习的知识,分享思考
查看详细资料
个人成就
  • 获得91次点赞
  • 内容获得33次评论
  • 获得285次收藏
创作历程
  • 43篇
    2020年
成就勋章
TA的专栏
  • Pytorch
    26篇
  • NLP
    4篇
  • 计算机视觉
    1篇
  • 数据竞赛
    3篇
  • 深度学习
    2篇
  • Python
    1篇
  • 数据结构
    1篇
  • Java
    3篇
  • 论文
    1篇
  • 机器学习
    1篇
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

PyTorch 实现 Skip-gram

代码实现:https://github.com/zhangxiann/Skip-gram这篇文章来说下如何使用 PyTorch 实现 Skip-gram,文中会出现一些数学公式。CBOW 和 Skip-gram 是两种训练得到词向量的方法。其中 CBOW 是从上下文字词推测目标字词,而 Skip-gram 则是从目标字词推测上下文的字词。在大型数据集上,CBOW 比 Skip-gram 效果好;但是在小的数据集上,Skip-gram 比 CBOW 效果好。本文使用 PyTorch 来实现 Skip-.
原创
发布博客 2020.11.06 ·
971 阅读 ·
2 点赞 ·
0 评论

[PyTorch 学习笔记] 汇总 - 完结撒花

PyTorch 学习笔记这篇文章是我学习 PyTorch 过程中所记录的学习笔记汇总,包括 25 篇文章,是我学习深度之眼 PyTorch 框架版课程期间所记录的内容。课程地址:https://ai.deepshare.net/detail/p_5df0ad9a09d37_qYqVmt85/6。学习笔记的结构遵循课程的顺序,共分为 8 周,循序渐进,力求通俗易懂。代码配套代码:https://github.com/zhangxiann/PyTorch_Practice所有代码均在 PyCharm
原创
发布博客 2020.10.17 ·
716 阅读 ·
5 点赞 ·
1 评论

图解 BERT

本文翻译自:http://jalammar.github.io/illustrated-bert/。通俗易懂,非常适合刚刚开始了解 Bert 的同学。BERT 来源于 Transformer,如果你不知道 Transformer 是什么,你可以查看 图解 Transformer。2018 年是机器学习模型处理文本(或者更准确地说,自然语言处理或 NLP)的转折点。我们对这些方面的理解正在迅速发展:如何最好地表示单词和句子,从而最好地捕捉基本语义和关系?此外,NLP 社区已经发布了非常强大的组件,你.
原创
发布博客 2020.10.17 ·
310 阅读 ·
1 点赞 ·
0 评论

图解 Attention

本文翻译自 https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/序列到序列(seq2seq)模型是一种深度学习模型,在很多任务上都取得了成功,如:机器翻译、文本摘要、图像、图像理解(image captioning)。谷歌翻译在 2016 年年末开始使用这种模型。有 2 篇开创性的论文(Sutskever et al., 2014, Ch.
原创
发布博客 2020.10.13 ·
170 阅读 ·
3 点赞 ·
2 评论

[PyTorch 学习笔记] 8.4 手动实现 RNN

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson8/rnn_demo.py这篇文章主要介绍了循环神经网络(Recurrent Neural Network),简称 RNN。RNN 常用于处理不定长输入,常用于 NLP 以及时间序列的任务,这种数据一半具有前后关系。RNN 网络结构如下:上图的数据说明如下:xtx_{t}xt​:时刻 t 的输入,shape=(1,57)shape=(1,57)shap.
原创
发布博客 2020.10.09 ·
614 阅读 ·
0 点赞 ·
2 评论

[PyTorch 学习笔记] 8.2 目标检测简介

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson8/detection_demo.pyhttps://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson8/fasterrcnn_demo.py这篇文章主要介绍了目标检测。目标检测是判断目标在图像中的位置,有两个要素:分类:分类向量 P0,P1,P2...P_{0}, P_{1}, P_.
原创
发布博客 2020.09.26 ·
241 阅读 ·
1 点赞 ·
0 评论

[PyTorch 学习笔记] 8.3 GAN(生成对抗网络)简介

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson8/gan_inference.pyhttps://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson8/gan_demo.py这篇文章主要介绍了生成对抗网络(Generative Adversarial Network),简称 GAN。GAN 可以看作是一种可以生成特定分布数据的模.
原创
发布博客 2020.09.23 ·
193 阅读 ·
1 点赞 ·
0 评论

[PyTorch 学习笔记] 8.1 图像分类简述与 ResNet 源码分析

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson8/resnet_inference.py这篇文章主要介绍了 图像分类的 inference,其中会着重介绍 ResNet。模型概览在torchvision.model中,有很多封装好的模型。可以分类 3 类:经典网络alexnetvggresnetinceptiondensenetgooglenet轻量化网络squeezene.
原创
发布博客 2020.09.19 ·
232 阅读 ·
0 点赞 ·
0 评论

[PyTorch 学习笔记] 7.3 使用 GPU 训练模型

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/cuda_use.pyhttps://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/multi_gpu.py这篇文章主要介绍了 GPU 的使用。在数据运算时,两个数据进行运算,那么它们必须同时存放在同一个设备,要么同时是 CPU,要么同时是 GPU。而且数据和模型都要在同一个设备.
原创
发布博客 2020.09.19 ·
277 阅读 ·
0 点赞 ·
0 评论

[PyTorch 学习笔记] 7.2 模型 Finetune

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/finetune_resnet18.py这篇文章主要介绍了模型的 Finetune。迁移学习:把在 source domain 任务上的学习到的模型应用到 target domain 的任务。Finetune 就是一种迁移学习的方法。比如做人脸识别,可以把 ImageNet 看作 source domain,人脸数据集看作 target domain。通常.
原创
发布博客 2020.09.15 ·
148 阅读 ·
0 点赞 ·
0 评论

[PyTorch 学习笔记] 7.1 模型保存与加载

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/model_save.pyhttps://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/model_load.pyhttps://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson7/checkpoint_resume.p.
原创
发布博客 2020.09.15 ·
148 阅读 ·
0 点赞 ·
0 评论

[PyTorch 学习笔记] 6.2 Normalization

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/bn_and_initialize.pyhttps://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/bn_in_123_dim.pyhttps://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/normalliz.
原创
发布博客 2020.09.10 ·
117 阅读 ·
0 点赞 ·
0 评论

[PyTorch 学习笔记] 6.1 weight decay 和 dropout

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/L2_regularization.pyhttps://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/dropout_layer.pyhttps://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson6/dropout_r.
原创
发布博客 2020.09.08 ·
325 阅读 ·
1 点赞 ·
0 评论

PyTorch ResNet 使用与源码解析

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson8/resnet_inference.py这篇文章首先会简单介绍一下 PyTorch 中提供的图像分类的网络,然后重点介绍 ResNet 的使用,以及 ResNet 的源码。模型概览在torchvision.model中,有很多封装好的模型。可以分类 3 类:经典网络alexnetvggresnetinceptiondensenetgoo.
原创
发布博客 2020.09.08 ·
626 阅读 ·
4 点赞 ·
0 评论

[PyTorch 学习笔记] 5.2 Hook 函数与 CAM 算法

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson5/hook_fmap_vis.pyhttps://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson5/hook_methods.pyhttps://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson5/weight_fmap_vi.
原创
发布博客 2020.09.07 ·
207 阅读 ·
1 点赞 ·
0 评论

阿里天池 NLP 入门赛 Bert 方案 -3 Bert 预训练与分类

前言这篇文章用于记录阿里天池 NLP 入门赛,详细讲解了整个数据处理流程,以及如何从零构建一个模型,适合新手入门。赛题以新闻数据为赛题数据,数据集报名后可见并可下载。赛题数据为新闻文本,并按照字符级别进行匿名处理。整合划分出 14 个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐的文本数据。实质上是一个 14 分类问题。赛题数据由以下几个部分构成:训练集 20w 条样本,测试集 A 包括 5w 条样本,测试集 B 包括 5w 条样本。比赛地址:htt
原创
发布博客 2020.09.06 ·
760 阅读 ·
0 点赞 ·
0 评论

阿里天池 NLP 入门赛 Bert 方案 -2 Bert 源码讲解

前言这篇文章用于记录阿里天池 NLP 入门赛,详细讲解了整个数据处理流程,以及如何从零构建一个模型,适合新手入门。赛题以新闻数据为赛题数据,数据集报名后可见并可下载。赛题数据为新闻文本,并按照字符级别进行匿名处理。整合划分出 14 个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐的文本数据。实质上是一个 14 分类问题。赛题数据由以下几个部分构成:训练集 20w 条样本,测试集 A 包括 5w 条样本,测试集 B 包括 5w 条样本。比赛地址:htt
原创
发布博客 2020.09.06 ·
703 阅读 ·
1 点赞 ·
0 评论

阿里天池 NLP 入门赛 Bert 方案 -1 数据预处理

前言这篇文章用于记录阿里天池 NLP 入门赛,详细讲解了整个数据处理流程,以及如何从零构建一个模型,适合新手入门。赛题以新闻数据为赛题数据,数据集报名后可见并可下载。赛题数据为新闻文本,并按照字符级别进行匿名处理。整合划分出 14 个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐的文本数据。实质上是一个 14 分类问题。赛题数据由以下几个部分构成:训练集 20w 条样本,测试集 A 包括 5w 条样本,测试集 B 包括 5w 条样本。比赛地址:htt
原创
发布博客 2020.09.06 ·
1021 阅读 ·
4 点赞 ·
0 评论

[PyTorch 学习笔记] 5.1 TensorBoard 介绍

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson5/tensorboard_methods.pyhttps://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson5/tensorboard_methods_2.pyhttps://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson5.
原创
发布博客 2020.09.05 ·
308 阅读 ·
0 点赞 ·
0 评论

[PyTorch 学习笔记] 4.3 优化器

本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/optimizer_methods.pyhttps://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/momentum.py这篇文章主要介绍了 PyTorch 中的优化器,包括 3 个部分:优化器的概念、optimizer 的属性、optimizer 的方法。优化器的概念PyT.
原创
发布博客 2020.09.03 ·
179 阅读 ·
0 点赞 ·
0 评论
加载更多