本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/computational_graph.py
计算图
深度学习就是对张量进行一系列的操作,随着操作种类和数量的增多,会出现各种值得思考的问题。比如多个操作之间是否可以并行,如何协同底层的不同设备,如何避免冗余的操作,以实现最高效的计算效率,同时避免一些 bug。因此产生了计算图 (Computational Graph)。
计算图是用来描述运算的有向无环图,有两个主要元素:节点 (Node) 和边 (Edge)。节点表示数据,如向量、矩阵、张量。边表示运算,如加减乘除卷积等。
用计算图表示: y = ( x + w ) ∗ ( w + 1 ) y=(x+w)*(w+1) y=(x+w)∗(w+1),如下所示:

可以看作, y = a × b y=a \times b y=a×b ,其中 a = x + w a=x+w a=x+w, b = w + 1 b=w+1