自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(59)
  • 资源 (2)
  • 收藏
  • 关注

原创 推荐系统常用数据集汇总(20个)

对推荐算法算法中常用的数据集进行汇总介绍

2024-10-22 20:51:50 966

原创 解决ant desgin charts柱状图 柱子上浮

ant desgin charts 柱状图 柱子上浮

2024-08-05 15:28:23 283

原创 动画效果-精灵图人物移动

【代码】动画效果-精灵图人物移动。

2024-04-02 11:05:46 245

原创 视频记录历史播放位置效果

每次打开页面视频从上一次的播放位置开始播放利用lodash库做节流。

2024-03-23 10:43:53 610

原创 放大镜效果

利用css和js来实现图片放大效果。

2024-03-20 16:22:25 215

原创 翻转时钟效果

时分秒三个部分结构功能完全一致,均有四块构成,上下各两块。正面可见,背面不可见,同时需要调整翻转过程中的z-index。初始状态card2为已经翻转状态。

2024-03-15 11:15:29 436

原创 不规则文字环绕

【代码】不规则文字环绕。

2024-03-13 20:18:16 397

原创 滚动歌词效果

快速创建30个li,乱数假文 li*30>lorem。

2024-03-11 20:56:17 405

原创 ant-desgin charts双轴图DualAxes,柱状图无法立即显示,并且只有在调整页面大小(放大或缩小)后才开始显示

双轴图表中,柱状图无法立即显示,并且只有在调整页面大小(放大或缩小)后才开始显示。

2024-03-07 20:00:00 886

原创 ant-design-charts 对带缩略轴柱状图 根据数据自定义列处理, 以颜色为例

本文主要对ant-design-charts中带缩略柱状图进行自定义列处理ant-design-charts版本:1.4.2"a": "七台河",'c': 2},"a": "万县",'c': 1},当需要对柱状图的列进行自定义处理时,可以用color属性,style属性,columStyle属性等通过对每一列对应的数据对象进行分析,来进行自定义处理,但是以上属性只包含x轴,y轴对应的属性如果需要依赖x轴,y轴对应的属性以外的属性进行判断时,可以用将该属性加入到数据中,增加属性。

2024-02-23 20:23:12 956

原创 Python的学习记录

复数:real + imag j,虚数部分必须用j或J结尾。学习于《Python编程:从入门到实践》不可分割的原子类型,包括整数和浮点数。由Unicode码位构成的不可变序列。列表由一系列特定顺序排列的元素组成。

2023-04-22 19:24:30 487 1

原创 Git介绍与相关操作

git是用于版本控制的软件,保留历史记录,便于回溯。

2023-04-16 11:22:47 379

原创 embedding时报错IndexError: index out of range in self

报这个错误是embedding层的张量输入超过了合法范围,下标超了原因进行词嵌入(embedding)操作时,权重矩阵的每一行可以理解为字典中的每一个键,one-hot的各个类别,每一列为隐向量,相当于词的特征,字典中的值。在输入时,只有数据是这个字典的键的时候才能找到对应的隐向量进行计算。而键用下标表示的就是,输入数据的index在[0, num_embeddings-1](权重矩阵的行数-1)之间。这就是embedding的结果,权重矩阵,下图为三行五列,三个词,每个词五个特征验证#查看

2022-04-08 16:47:13 3188

原创 经典神经网络( AlexNet,VggNet,NiN,GoogLeNet,ResNet)

卷积神经网络演化史AlexNet模型结构贡献ReLU激活函数分布式GPU运算LRN(局部响应归一化),提高泛化能力重叠池化,池化窗的步长小于池化层的大小,在池化时产生重叠。正则化方法数据集增强dropout,随机关闭神经元实现代码import torchfrom torch import nnnet = nn.Sequential( # 这里,我们使用一个11*11的更大窗口来捕捉对象。 # 同时,步幅为4,以减少输出的高度和宽度。 #

2022-03-16 23:45:49 2648

原创 forward() missing 1 required positional argument: ‘indices‘错误解决

在自编码器中,进行上池化操作时报了forward() missing 1 required positional argument: 'indices’的错误。部分代码:def __init__(): self.pool1 = nn.MaxPool2d((3,3),stride=2) self.pool2 = nn.MaxUnpool2d((3,3),stride=2)、、、、、def forward(): tempx= self.pool1(x) y = self.pool2(tempx)

2022-03-14 20:54:14 9215

原创 基于社交网络的推荐算法

社交⽹络数据数据获取社交网络数据的获取方式:电子邮件用户注册信息用户位置信息论坛和讨论组及时聊天工具社交网站数据类型社交⽹络定义了⽤户之间的联系,因此可以⽤图定义社交⽹络。⽤图 G(V,E,w)定义⼀个社交⽹络,其中V 是顶点集合,每个顶点代表⼀个⽤户,E是边集合,如果⽤户va 和vb 有社交⽹络关系,那么就有⼀条 e(va,vb)连接这两个⽤户,⽽ w(va,vb)定义了边的权重。对图G 中的⽤户顶点 u,定义 out(u)为顶点 u指向的顶点集合,定义为int(u)指向顶点 u

2022-03-11 23:04:49 4398 1

原创 基于上下文的推荐算法

背景之前的算法主要研究了如何联系用户和物品,将最符合用户兴趣的物品推荐给用户,但这些算法都忽略了一点,就是用户所处的上下文(context)。这些上下文包括用户访问推荐系统的时间、地点、心情等。基于时间上下文的推荐时间信息特性:用户信息的变化的物品也有生命周期季节特性引入时间信息后,推荐系统由静态系统变成了时变系统,用户行为变成了时间序列。度量指标时间多样性:推荐系统每天推荐结果的变化程度被定义为推荐系统的时间多样性。时间多样性高的推荐系统中用户会经常看到不同的推荐结果。时间衰减

2022-03-09 23:34:06 2118 3

原创 CNN--卷积神经网络的学习

简述卷积神经网络是一种经典的前馈神经网络,主要受生物学中的感受野的概念提出。感受野在生物体中广泛存在,一个感受野连接多个感受器细胞,这些感受器细胞共同决定了感受野是否兴奋。通过感受野的机制,生物体传入的信号数量会大大降低,同时也能很好的对输入信号进行特征提取。基本概念感受器与感受野感受器感受器即卷积核,在图像处理中也称为算子。一个卷积核包含与输入图像通道数目相同的过滤器,一个卷积核产生一个特征图。感受野特征图上的某个点能看到的输入图像的区域,即输入图像中每次与感受器进行运算的区域。特征图

2022-03-08 20:33:04 2850 3

原创 基于用户行为特征的推荐算法

简述:基于用户行为分析的推荐算法是个性化推荐系统的重要算法,也被称为协同过滤算法,即通过用户与网站不断互动,来不断过滤自己感兴趣的物品。基础概念用户行为分类按照反馈的明确性分显性反馈行为:用户明确表示对物品的喜好的行为,如点赞,评分等隐形反馈行为:不能明确反映用户喜好的行为,浏览日志,观看日志等按照反馈的⽅向分正反馈:指⽤户的⾏为倾向于指⽤户喜欢该物品。负反馈:负反馈指⽤户的⾏为倾向于指⽤户不喜欢该物品用户行为表示用户行为分析用户行为数据满足power law的分布,即长尾分

2022-03-05 21:37:58 9010 3

原创 图像处理学习---基础

取样图像空间坐标的离散化决定了空间分辨率的大小量化图像函数值的离散化编码或量化编码决定了图像的颜色深度等信息图像的表示离散亮度函数二维矩阵三维坐标描述图像的存储按色面存储按像素存储按行存储图像的质量层次表示图像实际拥有的灰度级的数量具有32个不同取值的图像可称该图有32个层次对比度指的是一幅图像中明暗区域最亮的白和最暗的黑之间不同亮度层级的测量,即指一幅图像灰度反差的大小。清晰度与亮度,对比度,空间分辨率,细微层次,颜色饱和度有关.

2021-12-05 15:34:20 853

原创 图像处理学习记录---空域滤波

空域滤波基于点运算灰度变换直方图变换基于模板运算(滤波)卷积和图像平滑模糊图像中灰度变化的区域,同时导致了视觉失真线性平滑滤波均值滤波对椒盐噪声的抑制比较好高斯滤波相当于同心圆等权,加权滤波构造高斯滤波器的方法双边滤波器借鉴高斯滤波器的权重计算方式,双边滤波器的权重的估计同时考虑邻域像素与当前像素的空间距离差异和灰度差异非线性平滑滤波统计排序滤波器:中值滤波器,最大值滤波器,最小值滤波器,中点滤波器,百分位滤波器,带Alpha截断的均值滤波器。

2021-12-04 20:33:58 3100

原创 图像处理学习记录---频域滤波

频域滤波数字图像的表示空间域表示法:图像数据的矩阵表示,数组表示变换域表示法:傅里叶变换的频域表示数字图像的处理方法空间域法:直接在图像作用域处理变换域法:图像变化-变换域处理-逆变换图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域

2021-12-04 14:18:47 3878

原创 图像处理学习记录---图像分割

图像分割依据跳变性与相似性,令集合R代表一幅图像占据的整个空间区域,图像分割就是将R按照完整性,连通性,独立性,单一性,互斥性的条件划分为若干非空子集的过程。分割方法分类边缘分割法和区域分割法并行分割法和串行分割法...

2021-12-03 15:24:31 3043

原创 图形处理学习记录---彩色图像处理

彩色图像处理描述彩色光源质量的三个基本量:辐射亮度:从光源发出的能量总量发光强度:观察者从光源感知的能量总和亮度:主观描述子,是关于彩色感觉的一种描述,体现了发光强度的消色概念。全彩色图像处理全彩色也叫真彩色,由RGB三种基色构成24位色被称为真彩色,它可以达到人眼分辨的极限,发色数1677万多色,也就是2的24次方。但32位色就并非是2的32次方的发色数,它其实也是1677万多色,不过它增加了256阶颜色的灰度,为了方便称呼,就规定它为32位色。少量显卡能达到36位色,它是27位发色

2021-12-02 21:56:54 1311

原创 图像处理学习记录---形态学图像处理

灰度图像的均值反映亮度特性,方差反映对比度特性理想滤波器、高斯滤波器、巴特沃斯滤波器中,只有高斯滤波器不会产生“振铃效应”。

2021-11-30 21:42:06 2294

原创 记录Python项目打包遇到的各种问题

使用环境使用pyinstaller进行打包miniconda构建的虚拟环境,Python3.7所用核心模块:pyqt5,opencv,mediapipe以及一些深度学习模型遇到问题检测所有的库简单方法就是在命令面板运行你的主文件,能运行就可以往下打包出现EXE文件,否则不会出现exe问价你。压缩打包后文件大小进入到虚拟环境后在进行下载,避免的miniconda直带的pyinstaller导致出现问题,同时虚拟环境只包含了呵项目有关的库,使得最终的包更小一点,避免一些额外的库pi

2021-11-26 15:45:46 2664

原创 action=‘store_%s‘的记录

在弄action=‘store_false‘时有点乱,记录一下当有action时,不能为 --cpu 赋值,会发生error: unrecognized arguments 的错误parser.add_argument('--cpu',action='store_true', default='false',help='run network inference on cpu')在终端 输入–cpu,返回为 true (action)在终端不输入 --cpu ,返回 false (def

2021-11-15 20:02:57 183

原创 RuntimeError: non-empty 3D or 4D input tensor expected but got ndim: 4

在使用pytorch训练模型时报,以下错误:RuntimeError: non-empty 3D or 4D input tensor expected but got ndim: 4当把一个空的张量传递给池化层时,就会引发该错误pool = nn.MaxPool2d(2)y = torch.tensor([[[[]]]])out = pool(y)RuntimeError: non-empty 3D or 4D input tensor expected but got ndim: 4因

2021-11-12 14:36:55 7982

原创 mysql数据库sql语句的总结笔记

简述: 区分四个基本概念数据(Data) 是数据库中存储的基本对象,包括文字,数字,图像,视频等,是描述事物的符号记录。数据库(Database,简称DB) 是长期储存在计算机内、有组织的、可共享的大量数据的集合。数据库管理系统(Database management system,DBMS ),位于用户与操作系统之间的一层数据管理软件,是基础软件,是一个大型复杂的软件系统 。数据库系统:在计算机系统中引入数据库后的系统,由数据库,数据库管理系统(及其应用开发工具),应用程序,数据库管理员 (Da

2021-11-12 00:41:16 1509

原创 MySQL数据文件介绍及存放位置

MySQL数据库文件介绍MySQL的每个数据库都对应存放在一个与数据库同名的文件夹中,MySQL数据库文件包括MySQL(server)所建数据库文件和MySQL(server)所用存储引擎创建的数据库文件。MySQL(server)创建并管理的数据库文件:.frm文件:存储数据表的框架结构,文件名与表名相同,每个表对应一个同名frm文件,与操作系统和存储引擎无关,即不管MySQL运行在何种操作系统上,使用何种存储引擎,都有这个文件。除了必有的.frm文件,根据MySQL所使用的存储引擎的不同(My

2021-11-10 14:26:43 5116

原创 线性回归分析的学习

最小二乘线性回归模型表示参数求解解析法数值优化法(梯度下降法)套索回归岭回归

2021-11-08 21:49:40 837

原创 LR--逻辑蒂斯回归的学习

二项logistic回归模型二项逻辑蒂斯回归,简称逻辑回归,也被称为对数几率回归,在回归模型中引入sigmoid函数,构成非线性回归模型,将回归模型的预测值利用单位阶跃函数,将预测值转换为离散值。模型的表示:sigmoid函数在一定程度上接近单位阶跃函数,但其单调可微,以替代单位阶跃函数的不连续。sigmoid函数的性质概率形式输出。sigmoid函数是单调递增的,其值域为(0,1),因此使sigmoid函数输出可作为概率值。数据特征加权累加。 数据特征加权累加。对输入????取值

2021-11-04 16:21:02 370

原创 Python进度条神器tqdm

简述:tqdm就能非常完美的支持和解决通过进度条将处理情况进行可视化展示的问题,可以实时输出处理进度而且占用的CPU资源非常少,支持windows、Linux、mac等系统,支持循环处理、多进程、递归处理、还可以结合linux的命令来查看处理情况,等进度展示。安装pip install tqdm使用迭代对象处理from tqdm import tqdmimport timefor i in tqdm(range(100)): time.sleep(0.1) pass

2021-11-04 09:58:01 584

原创 ANN---人工神经网络的学习

简述:⼈⼯神经⽹络(artificial neural network,ANN),简称神经⽹络(neural network,NN)。是⼀种模仿⽣物神经⽹络(动物的中枢神经系统,特别是⼤脑)的结构和功能的数学模型或计算模型,⽤于对函数进⾏估计或近似。激活函数非线性变换,将累加信号变换后输出,一般使用压缩函数。来限制振幅。作用:增强网络表达能力,没有激活函数就相当于矩阵相乘。一个神经网络中不一定只有一种激活函数,一般选择非线性激活函数,输出层激活函数取决于任务类型。常见的激活函数:后两个为现在常用的激

2021-11-01 15:17:06 3065

原创 SVM--支持向量机的学习

简介:支持向量机的一种与‘支持向量’有关的算法,基本模型的定义在特征空间上的间隔最大的线性分类器,按照任务又分为支持向量分类SVC和支持向量回归SVR线性可分下的SVC(硬间隔)线性可分:对于训练样本集{(???????? , ???????? ), … , (???????? , ???????? )},存在一组(???? ,????),使得则训练集在i=1-N上线性可分。支持向量:离超平面最近的两类样本。基于最优化理论,最优分类超平面应满足:(1)该超平面分开了两类;(2)该超平面最大

2021-10-31 16:31:23 393

原创 yolov5-train.py解读

train.py# YOLOv5 ???? by Ultralytics, GPL-3.0 license"""Train a YOLOv5 model on a custom datasetUsage: $ python path/to/train.py --data coco128.yaml --weights yolov5s.pt --img 640"""import argparseimport loggingimport mathimport osimport ra

2021-10-29 15:00:47 4397

原创 YOLOV5源码的详细解读

├── data:主要是存放一些超参数的配置文件(这些文件(yaml文件)是用来配置训练集和测试集还有验证集的路径的,其中还包括目标检测的种类数和种类的名称);还有一些官方提供测试的图片。如果是训练自己的数据集的话,那么就需要修改其中的yaml文件。但是自己的数据集不建议放在这个路径下面,而是建议把数据集放到yolov5项目的同级目录下面。├── models:里面主要是一些网络构建的配置文件和函数,其中包含了该项目的四个不同的版本,分别为是s、m、l、x。从名字就可以看出,这几个版本的大小。他们的检测测

2021-10-24 09:38:23 39824 7

原创 YOLO与voc格式互转,超详细

简述:YOLO为txt格式,voc为xml格式,具体结构如下图:目录结构:|—py文件(转换的py文件)|—dataset||–annotation (存放voc格式的文件夹)||–YOLOLabels(要存放YOLO格式的文件夹)||–JPEGImages(照片文件夹)||–image|||–train|||–val||–label|||–train|||–valVOC转YOLOimport xml.etree.ElementTree as ETimport pic

2021-10-21 17:05:12 19351 31

原创 lightweight_openpose的安装与使用

简述:lightweight_openpose作为轻量性模型,相较于openpose,安装简单,实时性强,准确率也并没有将太多,速度与精度都不错,仅。这是几个轻量型的目标检测模型,第二个就是我们要用的https://github.com/dog-qiuqiu/Yolo-Fastesthttps://codechina.csdn.net/mirrors/Daniil-Osokin/lightweight-human-pose-estimation.pytorchhttps://codechina.cs

2021-10-20 23:01:43 2932 17

原创 openpose和mediapipe中的关键点

1、18点模型对应位置:// {0, “Nose”},// {1, “Neck”},// {2, “RShoulder”},// {3, “RElbow”},// {4, “RWrist”},// {5, “LShoulder”},// {6, “LElbow”},// {7, “LWrist”},// {8, “RHip”},// {9, “RKnee”},// {10, “RAnkle”},// {11, “LHip”},// {12, “LKnee”},// {13, “

2021-10-20 20:35:07 5636

DIP-2-0x 深度学习及其在图像处理中的应用.pdf

DIP-2-0x 深度学习及其在图像处理中的应用.pdf

2021-10-27

文档-scikit-learn-docs-2754pages.pdf

scikit-learn文档

2021-10-01

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除