[10.02]T2分组配对

题意

现有两组数a,b,长有n。有分组方式选择连续区间[l,r],区间价值为任意a[ l i l_i li] * b[ r i r_i ri] 之和
期望尽可能少的划分组,任意区间价值不超过m
1 ≤ n ≤ 5 ∗ 1 0 5 , 1 ≤ a i , b i ≤ 1 0 5 , m ≤ 1 0 15 1≤n≤5*10^5, 1≤a_i,b_i≤10^5, m≤10^{15} 1n51051ai,bi105m1015

我们如果区间是[1,n]我们显然有一种价值最优的方法,就是最大乘最大,最小乘最小这样,
那么每个区间都是这样,
于是我们就有一个很显然的sort的暴力,即每个区间都sort一下,然后判断是否可行,写的比较好的 话有70分。
然后我们考虑二分一个组的长度,这个单调性是很显然 的,然后我们在最开始的时候将区间sort一下,求出从前往后选的最大长度和从后往前选的最大长度,可直接作为二分的边界,这样的话是可以卡过数据的。
另一个方法就是倍增二分,倍增先找出一个上下界,然后再在里面二分即可

#include<bits/stdc++.h>

#define MAXN 500010
#define ll long long 
#define rg register
#define INF 0x3f3f3f3f
#define gc() getchar()

using namespace std;

template <class T>
inline void read(T &s){
	T w = 1, ch = gc(); s = 0;
	while(!isdigit(ch)){if(ch == '-') w = -1; ch = gc();}
	while(isdigit(ch)){ s = s * 10 + ch - '0'; ch = gc();}
	s *= w; return ;
}

int n;
ll k;
ll a[MAXN], b[MAXN], c[MAXN], d[MAXN];
int num = 0, len = 0;

bool check(int x, int len){
	int y = x + len - 1;
	for(int i = x; i <= y; ++i){
		c[i] = a[i], d[i] = b[i];
	}
	sort(c + x, c + y + 1); sort(d + x, d + y + 1);
	ll sum = 0;
	for(int i = x; i <= y; ++i){
		sum += d[i] * c[i];
		if(sum > k) return 0;
	}
	return 1;
}

int main()
{
	freopen("pair.in", "r", stdin);
	freopen("pair.out", "w", stdout);
	
	read(n), read(k);
	
	for(int i = 1; i <= n; ++i) read(a[i]);
	for(int i = 1; i <= n; ++i) read(b[i]);
	
	int m = 0, x = 1;
	while(x <= n){
		int len;
		for(len = 1; (x + len - 1) <= n && check(x, len); len *= 2);
		int l = len >> 1, r = min(len - 1, n - x + 1);
		while(l < r){
			int mid = (l + r + 1) / 2;
			if(check(x, mid)) l = mid;
			else r = mid - 1;
		}
		x += l;
		++m;
	}
	printf("%d\n", m);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIGBIGPPT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值