题意
现有两组数a,b,长有n。有分组方式选择连续区间[l,r],区间价值为任意a[
l
i
l_i
li] * b[
r
i
r_i
ri] 之和
期望尽可能少的划分组,任意区间价值不超过m
1
≤
n
≤
5
∗
1
0
5
,
1
≤
a
i
,
b
i
≤
1
0
5
,
m
≤
1
0
15
1≤n≤5*10^5, 1≤a_i,b_i≤10^5, m≤10^{15}
1≤n≤5∗105,1≤ai,bi≤105,m≤1015
我们如果区间是[1,n]我们显然有一种价值最优的方法,就是最大乘最大,最小乘最小这样,
那么每个区间都是这样,
于是我们就有一个很显然的sort的暴力,即每个区间都sort一下,然后判断是否可行,写的比较好的 话有70分。
然后我们考虑二分一个组的长度,这个单调性是很显然 的,然后我们在最开始的时候将区间sort一下,求出从前往后选的最大长度和从后往前选的最大长度,可直接作为二分的边界,这样的话是可以卡过数据的。
另一个方法就是倍增二分,倍增先找出一个上下界,然后再在里面二分即可
#include<bits/stdc++.h>
#define MAXN 500010
#define ll long long
#define rg register
#define INF 0x3f3f3f3f
#define gc() getchar()
using namespace std;
template <class T>
inline void read(T &s){
T w = 1, ch = gc(); s = 0;
while(!isdigit(ch)){if(ch == '-') w = -1; ch = gc();}
while(isdigit(ch)){ s = s * 10 + ch - '0'; ch = gc();}
s *= w; return ;
}
int n;
ll k;
ll a[MAXN], b[MAXN], c[MAXN], d[MAXN];
int num = 0, len = 0;
bool check(int x, int len){
int y = x + len - 1;
for(int i = x; i <= y; ++i){
c[i] = a[i], d[i] = b[i];
}
sort(c + x, c + y + 1); sort(d + x, d + y + 1);
ll sum = 0;
for(int i = x; i <= y; ++i){
sum += d[i] * c[i];
if(sum > k) return 0;
}
return 1;
}
int main()
{
freopen("pair.in", "r", stdin);
freopen("pair.out", "w", stdout);
read(n), read(k);
for(int i = 1; i <= n; ++i) read(a[i]);
for(int i = 1; i <= n; ++i) read(b[i]);
int m = 0, x = 1;
while(x <= n){
int len;
for(len = 1; (x + len - 1) <= n && check(x, len); len *= 2);
int l = len >> 1, r = min(len - 1, n - x + 1);
while(l < r){
int mid = (l + r + 1) / 2;
if(check(x, mid)) l = mid;
else r = mid - 1;
}
x += l;
++m;
}
printf("%d\n", m);
return 0;
}