题目背景
一年一度的“跳石头”比赛又要开始了!
题目描述
这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石。组委会已经选择好了两块岩石作为比赛起点和终点。在起点和终点之间,有 NN 块岩石(不含起点和终点的岩石)。在比赛过程中,选手们将从起点出发,每一步跳向相邻的岩石,直至到达终点。
为了提高比赛难度,组委会计划移走一些岩石,使得选手们在比赛过程中的最短跳跃距离尽可能长。由于预算限制,组委会至多从起点和终点之间移走 MM 块岩石(不能移走起点和终点的岩石)。
输入格式
第一行包含三个整数 L,N,M,分别表示起点到终点的距离,起点和终点之间的岩石数,以及组委会至多移走的岩石数。保证 L ≥ 1 L \geq 1 L≥1 且 N ≥ M ≥ 0 N \geq M \geq 0 N≥M≥0
接下来 N行,每行一个整数,第 i 行的整数 D i ( 0 < D i < L ) D_i( 0 < D_i < L) Di(0<Di<L) 表示第 ii 块岩石与起点的距离。这些岩石按与起点距离从小到大的顺序给出,且不会有两个岩石出现在同一个位置。
输出格式
一个整数,即最短跳跃距离的最大值。
输入输出样例
输入 #1 复制
25 5 2
2
11
14
17
21
输出 #1 复制
4
说明/提示
输入输出样例 1 说明:将与起点距离为 2和 14的两个岩石移走后,最短的跳跃距离为 4(从与起点距离 17的岩石跳到距离 21 的岩石,或者从距离 21的岩石跳到终点)。
另:对于 20%20%的数据,0 ≤ M ≤ N ≤ 10
对于50%50%的数据,0 ≤ M ≤ N ≤ 100
对于 100%100%的数据,0 ≤ M ≤ N ≤ 50,000,1 ≤ L ≤ 1,000,000,000
啊啊啊
第一次写二分答案。。。。
这道题我们考虑二分答案,每次判断答案是否成立,
判断的时候我们对于每一次跳石子,如果距离<枚举出的答案,就移走前面的石头直到前面距离≥枚举的答案。
跳完以后如果移走石子数大于m则答案不成立就往左二分,如果小于等于则成立就向右二分。
#include<bits/stdc++.h>
#define ll long long
#define MAXN 500010
#define N 1001
#define INF 0x3f3f3f3f
#define gtc() getchar()
using namespace std;
template <class T>
inline void read(T &s){
s = 0; T w = 1, ch = gtc();
while(!isdigit(ch)){if(ch == '-') w = -1; ch = gtc();}
while(isdigit(ch)){s = s * 10 + ch - '0'; ch = gtc();}
s *= w;
}
template <class T>
inline void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x > 9) write(x/10);
putchar(x % 10 + '0');
}
int L, n, m;
int a[MAXN];
inline bool check(int x){
int num = 0;
int i = 0, j = 0;
while(i < n+1){
++i;
if(a[i] - a[j] < x){//如果跳跃距离小于二分的答案就移走当前石头
++num;
}
else{
j = i;
}
}
if(num > m) return false;
return true;
}
int main()
{
// freopen(".in", "r", stdin);
// freopen(".out", "w", stdout);
read(L), read(n), read(m);
for(int i = 1; i <= n; ++i) read(a[i]);
a[n+1] = L;
int l = 1, r = L, ans = 0;
while(l <= r){
int mid = (l+r) >> 1;
if(check(mid)){//如果二分出的合法
ans = mid;
l = mid + 1;
}
else{//这里mid已经不合法,所以右边界为mid-1
r = mid - 1;
}
}
cout << ans << endl;
return 0;
}