材料结构与可靠性

本文详细介绍了可靠性工程中的概率基础,包括古典概率、统计概率、概率的运算定律,以及随机事件的数学表示。此外,还讲解了常用概率分布如二项分布、泊松分布、指数分布、正态分布和对数正态分布,以及它们在可靠性工程中的应用。故障分析、预防与控制,以及可靠性定义也是讨论的重点。
摘要由CSDN通过智能技术生成

第1章 可靠性工程数学基础

1.1 可靠性的概率基础

  • 古典概率

    • 特征:1)只有有限个互不相容(不可能同时发生)的基本事件 2)所有基本事件的发生是等可能的

    • n个互不相容的等可能的基本事件发生,A包含的基本时间的数目为M个,则事件A发生的概率为

    • $$
      P(A)=\dfrac{事件A所包含的基本事件数}{基本事件的总数}=\dfrac{M}{n}
      $$

       

  • 统计概率

    • 设随机事件A在相同的条件下重复n次试验中出现了m次,则事件 A在n次试验中出现的频率为:

      $$
      f(A)=\dfrac{m}{n}
      $$

    • 当试验次数逐渐增多时,频率f(A)逐渐趋近于常数。这个数反映了随机事件A发生可能性大小的统计规律。当 n 足够大时,就取 f(A) 作为 A 的概率近似值,成为随机事件 A 的统计概率

  • 概率的基本定理与运算

    • 加法定律

      • 随机事件A1、A2、…、An的和是一事件,它表示其中至少有一件发生。记作:A1+A2+﹍+An,则有:

        • 两互不相容事件的和的概率等于这两个事件概率和

        $$
        P(A\cup B)=P(A)+P(B)
        $$

         
        • 有限个互不相容事件和的概率等于这些事件的概率和

          $$
          P(A_1\cup A_2\cup\cdots\cup A_n)=P(A_1)+P(A_2)+\cdots+P(A_n)
          $$

        • 对立事件的概率和等于1,即 $P(A) + P(\bar{A}) =1$

        • 任意两相容事件A和B的和的概率为 $P(A\cup B)=P(A)+P(B)-P(A\cap B)$

    • 条件概率

      • 在工程中经常会遇到某一事件A的概率与另一事件B的出现与否有关的问题。在事件B已经发生的条件下,事件A发生的概率称为条件概率,并用 P(A|B) 表示。

        $$
        P(B|A)=\dfrac{P(AB)}{P(A)}
        $$

         

    • 乘法定律

      • 任意两个事件同时发生的概率等于其中一事件的概率与另一事件在前一事件已发生的条件下的条件概率之积,即

        $$
        P(AB)=P(A) P(B|A)=P(B) P(A|B)
        $$

      • 推广:有限个事件同时发生概率

        $$
        P(A_1 ∩ A_2 ∩ A_3 ∩ … ∩A_n)= P(A_1)P(A_2|A_1)P(A_3|A_1A_2)…P(A_n|A_1A_2…A_{n-1})
        $$

      • 相互独立的事件:如果事件A的发生不影响事件B的概率,称A、B为互相独立的事件,他们的条件概率为:

        $$
        P(A|B)=P(A) \\P(B|A)=P(B)
        $$

         

        同时发生的概率为

        $$
        P(AB)=P(A)P(B)
        $$

      • 全概率公式

        如果事件组 $A_1,A_2,\cdots,A_n$ 满足(1) $A_1,A_2,\cdots,A_n$ 两两互不相容,且 $P(A_i)>0$ (2)$A_1+A_2+\cdots+A_n=Ω$ 。则对于任意事件B有:

        $$
        P(B)=\sum\limits_{i=1}^n P(A_i)P(B|A_i)
        $$

1.2 随机事件的数学表示

  • 随机变量:表示随机试验的各种结果的变量称为随机变量

  • $$
    P(a\le x\le b)=\int_{a}^{b} f(x)dx=F(b)=F(a)
    $$

  • $$
    f(x)=\frac{dF(x)}{dx}=F'(x)
    $$

  • $$
    F(x)=P(-\infin\le X\le x)=\int_{-\infin}^{x}f(x)dx
    $$

  • 数学期望 E(x)

    • 数学期望是表示随机变量平均取值的大小。

    • 连续型随机变量 $\mu_x=E(x)=\int_{-\infin}^{+\infin}xf(x)dx$

    • 离散型随机变量 $\mu_x=E(x)=\sum\limits_{i=1}^{\infin}x_iP(x_i)$

    • f(x) 随机变量的概率密度函数; P(x) 为随机变量的概率。

    • 性质

      • $$
        E(C)=C\\ E(CX)=CE(X)\\ E(X+C)=E(X)+C\\ E(x\pm y)=E(x)\pm E(y)=\mu_x \pm \mu_y\\ E(xy)=E(x)E(y)=\mu_x \mu_y
        $$

  • 方差V(x)

    • 表示随机变量的取值相对于平均值的分散程度的尺度

    • 离散型随机变量 $V(x)=\sigma^2=E[(x-\mu)^2]=\sum\limits_{i=1}^{\infin}(x_i-\mu)^2P(x_i)$

    • 连续型随机变量 $V(x)=\sigma^2=E[x-E(x)]^2=\int_{-\infin}^{+\infin}[x-E(x)]^2f(x)dx=E(x^2)-[E(x)]^2$

    • 标准差 $\sigma=\sqrt{V(x)}$

    • 统计方差 $S^2=\dfrac{1}{n-1}\sum\limits_{i=1}^{n}(x_i-\bar{x})^2$

    • 性质

      $$
      V(C)=0\\ V(Cx)=C^2V(x)\\ V(x+C)=V(x)\\ V(x\pm y)=V(x)+V(y)\\ V(xy)=\sigma_x^2\mu_y^2+\sigma_y^2\mu_x^2+\sigma_x^2\sigma_y^2\\ V(\dfrac{x}{y})\approx\dfrac{\sigma_x^2\mu_y^2+\sigma_y^2\mu_x^2}{\mu_y^4}
      $$

1.3 常用的概率分布

  • 二项分布

    • 伯努利实验:某一随机试验独立地重复n次试验,而每次试验只有两种不同的结果,且试验中事件发生的概率不变,这种重复的系列试验称为伯努利试验

    • 均值 $\mu_x=np$

    • 方差 $\sigma_x^2=npq$

    • x 发生概率为p ,不发生为q

  • 泊松分布

    • 在可靠性工程中应用二项分布时常常会遇到n很大(n>50),q很小(q<0.1) 的情况。这时二项分布将接近一个极限,这个极限称为泊松分布

    • 均值 $\mu_x=\lambda$

    • 方差 $\sigma_x^2=V(x)=\lambda$

  • 指数分布

    • 均值 $\mu_x=\dfrac{1}{\lambda}$

    • 方差 $\sigma_x^2=V(x)=\int_{-\infin}^{+\infin}[x-E(x)]^2f(x)dx=\dfrac{1}{\lambda^2}$

    • 可靠度函数 $R(t)=e^{-\lambda t}$

    • 失效分布函数 $F(t)=1-e^{-\lambda t}$

    • 失效密度函数 $f(t)=\dfrac{dF(t)}{dt}=\lambda e^{-\lambda t}$

  • 正态分布

    • 密度函数

      $$
      f(t)=\dfrac{1}{\sqrt{2\pi}\sigma}e^{-{1\over2}({{x-\mu}\over{\sigma}})^2}
      $$

       

    • 分布函数

      $$
      F(x)=P(X\le x)=\dfrac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{x}e^{-{1\over2}({{t-\mu}\over{\sigma}})^2}dt
      $$

       

    • 均值

      $$
      \mu_x=E(x)=\int_{-\infin}^{+\infin}xf(x)dx=\dfrac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{+\infin}xe^{-{1\over2}({{x-\mu}\over{\sigma}})^2}dx
      $$

    • 方差

      $$
      \sigma_x^2=V(x)=\dfrac{1}{\sqrt{2\pi}\sigma}\int_{-\infin}^{x}(x-\mu)^2e^{-{1\over2}({{x-\mu}\over{\sigma}})^2}dx
      $$

    • 性质

      • 3\sigma原则

        $$
        P[\mu-\sigma\le X\le\mu+\sigma]=0.6826\\ P[\mu-2\sigma\le X\le\mu+2\sigma]=0.9544\\ P[\mu-3\sigma\le X\le\mu+3\sigma]=0.9973
        $$

         

  • 对数正态分布

    • 如果随机变量X的自然对数 Y=lnX 服从正态分布,则称 X 服从对数正态分布。

    • 概率密度函数:

      $$
      f(x)=\dfrac{1}{x\sigma\sqrt{2\pi}}e^{-({{lnx-\mu}\over{2\sigma^2}})^2}
      $$

       

    • 累计分布函数:

      $$
      F(x)=\int_{0}^{x}\dfrac{1}{x\sigma_y\sqrt{2\pi}}e^{-{{1}\over{2}}({{lnx-\mu_y}\over{2\sigma_y^2}})^2}dx
      $$

    • 均值:

      $$
      E(x)=e^{\mu+{{\sigma^2}\over{2}}}
      $$

    • 标准差:

  • 威布尔分布

    • 均值:

      $$
      \mu_x=E(x)=\int_{0}^{\infin}x\dfrac\beta\eta (\dfrac{x-\gamma}{\eta})^{\beta-1}e^{-({{{x-\gamma}\over{\eta}})^{\beta}}}dx\\ =\gamma+\eta\Gamma(1+{{1}\over{\beta}})\\ where\quad \Gamma(s)=\int\limits_{0}^{\infin}x^{s-1}e^{-x}dx
      $$

    • 方差:

      $$
      \sigma_x^2=V(x)=\eta^2[\Gamma(1+{{2\over{\beta}}})-\Gamma^2(1+{{1}\over{\beta}})]
      $$

       

    • 分布密度函数:

      $$
      f(x)={{\beta}\over{\eta}}{({{x-\gamma}\over{\eta}})^{\beta-1}}e^{-({{{x-\gamma}\over{\eta}})^{\beta}}}\\ where\quad\beta>0\quad为形状参数\\ \eta>0\quad为尺度参数\\ \gamma \quad为位置参数
      $$

    • 累计分布函数:

      $$
      F(x)=1-e^{-({{{x-\gamma}\over{\eta}})^{\beta}}}
      $$

       

1.4 概率分布的应用

第2章 可靠性的基本概念

2.1 故障的分析、预防与控制

  • 产品及其功能:

    • 产品功能:

  • 故障及其定义:

    • 故障:

    • 故障状态:

    • 故障判据(失效判据)

  • 故障规律:

    • v

  • 故障发生的不确定性

  • 故障分析的基本方法

    • 产品故障判据

    • 产品故障条件

    • 产品故障位置

    • 产品故障时间

    • 产品故障传播

  • 故障及其分类

    • 按规律分类

    • 按照后果分类

    • 按照统计特性分类

  • 产品故障过程的描述方法

  • 故障预防与控制的基本方法

2.2 可靠性

  • 定义

第3章 可靠性模型与可靠度计算

第4章 可靠性分配和预测

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值