Clickhouse学习之路(二)-- 分区、分片原理

本文深入探讨了ClickHouse的分区和分片概念。分区允许按照特定列(如日期)对数据进行组织,提高查询效率和数据管理,支持TTL淘汰旧数据。而分片则是在不同节点间横向切分数据,实现分布式计算。ClickHouse支持多种分片策略,如随机、固定和基于列值的分片,以适应不同的业务需求。理解并有效利用分区和分片,能显著提升ClickHouse在大数据场景下的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.Clickhouse分区的概念

1.分区是表的分区,具体的DDL操作关键词是 PARTITION BY,指的是一个表按照某一列数据(比如日期)进行分区,对应到最终的结果就是不同分区的数据会写入不同的文件中。

2.ClickHouse支持PARTITION BY子句,在建表时可以指定按照任意合法表达式进行数据分区操作,比如通过toYYYYMM()将数据按月进行分区、toMonday()将数据按照周几进行分区、对Enum类型的列直接每种取值作为一个分区等。

3.数据Partition在ClickHouse中主要有两方面应用:
在partition key上进行分区裁剪,只查询必要的数据。灵活的partition expression设置,使得可以根据SQL Pattern进行分区设置,最大化的贴合业务特点
对partition进行TTL管理,淘汰过期的分区数据。

4.分区的建立方式
使用函数操作现有字段分区:PARTITION BY toYYYYMM(date_column)。
使用元组指定分区:PARTITION BY (toMonday(StartDate),EventType)
使用现有字段分区:PARTITION BY (name)

5.分区规则
.1 不定分区 书友数据使用all分区
.2 使用整型 直接按照整型的字符形式输出.
.3 使用日期 使用YYYYMMDD的进行格式化
.4 使用其它类型通过128位的hash算法作为分区的ID

6.分区虽好,但不是所有的表引擎都可以使用这项特性,目前只有合并树(MergeTree) 家族系列的表引擎才支持数据分区。

7.可以通过 system.parts 表查看表片段和分区信息。例如,假设我们有一个 visits 表,按月分区。对 system.parts 表执行 SELECT:

SELECT
    partition,
    name,
    active
FROM system.parts
WHERE table = 'visits'

官网文档点击这里

二.Clickhouse分片的概念

1.分片复用了数据库的分区,相当于在原有的分区下,作为第二层分区, 是在不同节点/机器上的体现。

2.ClickHouse支持单机模式,也支持分布式集群模式。在分布式模式下,ClickHouse会将数据分为多个分片,并且分布到不同节点上。不同的分片策略在应对不同的SQL Pattern时,各有优势。ClickHouse提供了丰富的sharding策略,让业务可以根据实际需求选用。
1) random随机分片:写入数据会被随机分发到分布式集群中的某个节点上。
2) constant固定分片:写入数据会被分发到固定一个节点上。
3) column value分片:按照某一列的值进行hash分片。
4) 自定义表达式分片:指定任意合法表达式,根据表达式被计算后的值进行hash分片。

3.数据分片,让ClickHouse可以充分利用整个集群的大规模并行计算能力,快速返回查询结果。更重要的是,多样化的分片功能,为业务优化打开了想象空间。比如在hash sharding的情况下,JOIN计算能够避免数据shuffle,直接在本地进行local join;支持自定义sharding,可以为不同业务和SQL Pattern定制最适合的分片策略;利用自定义sharding功能,通过设置合理的sharding expression可以解决分片间数据倾斜问题等

1.ClickHouse的集群由分片 ( Shard ) 组成,而每个分片又通过副本 ( Replica ) 组成。这种分层的概念,在一些流行的分布式系统中十分普遍。例如,在Elasticsearch的概念中,一个索引由分片和副本组成,副本可以看作一种特殊的分片。如果一个索引由5个分片组成,副本的基数是1,那么这个索引一共会拥有10个分片 ( 每1个分片对应1个副本 )。
如果你用同样的思路来理解ClickHouse的分片,那么很可能会在这里栽个跟头。ClickHouse的某些设计总是显得独树一帜,而集群与分片就是其中之一。这里有几个与众不同的特性。
ClickHouse的1个节点只能拥有1个分片,也就是说如果要实现1分片、1副本,则至少需要部署2个服务节点。
分片只是一个逻辑概念(类似于Hbase中的region的概念,表的范围数据),其物理承载还是由副本承担的。

官网文档点击这里

三.分区与分片的关系示意图

数据分区是针对本地数据而言的,是数据的一种纵向切分。 而数据分片是数据的一种横向切分

在这里插入图片描述

<think>嗯,用户想了解如何使用ClickHouseclickhouse-copier工具来同步表结构。我之前学过一点ClickHouse,但具体到copier这个工具可能得仔细回想一下。首先,clickhouse-copier主要是用于在集群之间复制数据的工具,对吧?不过用户的问题是关于同步表结构的,这可能涉及到在目标集群创建和源表结构相同的表。 我记得clickhouse-copier的文档里提到过,它需要一个配置文件,通常是XML格式的,里面会定义源集群和目标集群的连接信息,以及要复制的任务配置。这个配置文件可能有一个部分用来指定表结构相关的设置。可能需要配置<sharding>或者<table_structures>之类的部分? 不过,用户的问题具体是同步表结构,而clickhouse-copier在复制数据的时候,是否会自动在目标集群创建表呢?或者是否需要手动先创建表结构?这点可能需要确认。根据之前的经验,clickhouse-copier在复制数据前会检查目标表是否存在,如果不存在的话,可能会根据源表的定义来创建目标表。这样的话,同步表结构其实就是通过copier自动完成的。 不过,也有可能需要在配置文件中明确指定是否创建表结构。比如,在任务配置中有一个参数,比如create_distributed_table或者类似的选项,控制是否在目标集群创建分布式表。如果是复制本地表的话,可能需要确保目标集群的各个节点上已经存在对应的本地表结构。或者,copier是否会自动在目标节点的每个分片上创建本地表? 这时候可能需要查阅官方文档或者实际测试。假设用户需要在两个集群之间同步表结构,首先需要确保目标集群已经存在对应的数据库,或者copier有权限在目标集群创建数据库和表。 另外,用户可能关心的是,在同步数据之前是否需要手动处理表结构,或者copier是否能自动处理。如果copier可以自动创建表结构,那用户只需要正确配置即可。否则,用户可能需要使用其他方法,比如通过DDL语句导出源表结构,然后在目标集群执行。 再考虑一下,如果源表和目标表的集群结构不同,比如分片方式不同,这时候同步表结构可能需要调整分布式表的定义。例如,源表可能是分布式表,而目标集群的分片数不同,这时候copier如何处理?可能需要用户在配置文件中指定目标表的分布方式。 总结一下,clickhouse-copier在同步数据时,会根据配置文件中的设置,自动在目标集群创建对应的表结构,包括本地表和分布式表。用户需要正确配置源和目标的集群信息,以及需要复制的表的相关参数,比如引擎、分片键等。如果目标表已经存在,copier会跳过创建步骤,直接进行数据复制。因此,同步表结构的关键在于正确配置copier的任务文件,确保自动创建表结构的选项被启用,并且引擎定义正确。</think>ClickHouse的`clickhouse-copier`工具主要用于集群间数据复制,但也可用于表结构同步。以下是逐步说明: ### 1. 核心原理 - **表结构自动创建**:当目标集群不存在对应表时,`clickhouse-copier`会根据源表结构自动创建(需要正确配置) - **引擎适配**:支持自动转换引擎类型(如从`ReplicatedMergeTree`转为普通`MergeTree`) ### 2. 配置步骤 #### (1) 准备任务配置文件(XML格式) ```xml <?xml version="1.0"?> <yandex> <remote_servers> <source_cluster> <shard> <replica><host>source_host</host><port>9000</port></replica> </shard> </source_cluster> <destination_cluster> <shard> <replica><host>dest_host</host><port>9000</port></replica> </shard> </destination_cluster> </remote_servers> <max_workers>4</max_workers> <settings_pull/> <settings_push> <readonly>0</readonly> </settings_push> <tables> <table_hits> <!-- 表配置 --> <cluster_pull>source_cluster</cluster_pull> <cluster_push>destination_cluster</cluster_push> <database_pull>source_db</database_pull> <database_push>dest_db</database_push> <table_pull>hits</table_pull> <table_push>hits</table_push> <engine> ENGINE = ReplicatedMergeTree('/clickhouse/tables/{shard}/hits', '{replica}') ORDER BY (CounterID, EventDate) </engine> </table_hits> </tables> </yandex> ``` #### (2) 关键配置项说明 - `<engine>`:定义目标表引擎(自动替换`{shard}`和`{replica}`占位符) - `<create_table>1</create_table>`:显式启用表创建(默认已启用) - `<sharding_key>`:分布式表分片规则(如果创建分布式表) #### (3) 执行命令 ```bash clickhouse-copier --config config.xml --task-path task.xml --base-dir ./data ``` ### 3. 注意事项 1. **权限要求**:目标集群用户需要`CREATE TABLE`权限 2. **引擎转换**:复制非复制表到复制表时,需手动修改引擎定义 3. **结构变更**:如果源表结构已修改,需重新执行同步任务 4. **分区策略**:确保目标集群的分区策略与源集群兼容 ### 4. 验证方法 ```sql -- 在目标集群执行 DESCRIBE TABLE dest_db.hits SHOW CREATE TABLE dest_db.hits ``` ### 5. 高级用法 - **多表同步**:在`<tables>`节点中添加多个`<table_xxx>`配置块 - **条件过滤**:通过`<where_condition>`筛选需要同步的表结构 - **分布式表处理**:自动创建本地表和分布式表的组合 通过合理配置,clickhouse-copier可以实现: - 跨集群表结构同步 - 不同引擎类型自动转换 - 分布式表分片规则迁移 -分区策略复制 建议在生产环境使用前,先在测试环境验证表结构同步效果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值