【进制转换:除基取余法】求int型正整数在内存中存储时1的个数

一、进制转化方法

1、将P进制数x转换为十进制数y(略)

2、将十进制数y转换为Q进制数z:除基取余法

“所谓的基,是指将要转换成的进制Q,因此除基取余的意思就是每次将待转换数除以Q,然后将得到的余数作为低位存储,而商则继续除以Q并进行上面的操作,最后当商为0时,将所有位从高到低输出就可以得到z。”——《算法笔记》

如何理解?举个栗子,现在数组中存有三个有序的十进制位,“5”“3”“2”,当我们获得这三个数位之后,可以用一个循环来得到实际的十进制整数:①5 ②5 * 10+3=53 ③53 * 10+2=532。

int num=0;
int digit[3]={5,3,2};
for(int i=0;i<3;i++){
	num*=10;
	num+=digit[i];  
}

而除基取余法则相当于这个过程的倒置,还是举上面这个栗子:
首先,我们用532%10,得到了2;同时将532/10,得到53(即③53 * 10+2=532这一步骤的倒置);
第二步,用53%10,得到3;同时将53/10,得到5(即②5 * 10+3=53这一步骤的倒置)
最后,用5%10,得到5;同时将5/10,得到0。结束。

int num=532;
int digit[32];
int i=0;
do{
	digit[i]=num%10;
	num/=10;
	i++;
}while(num!=0); 	//注意这里用do…while而不用while,预防num=0的情况

二、例题

1、求int型正整数在内存中存储时1的个数

描述:

输入一个 int 型的正整数,计算出该 int 型数据在内存中存储时 1 的个数。
数据范围:保证在 32 位整型数字范围内。

输入描述:

输入一个整数(int类型)。

输出描述:

这个数转换成2进制后,输出1的个数。

题解:
#include <stdio.h>

int main() {
    int temp;
    int num;
    int i=0,j=0;
    int n=0;
    scanf("%d",&num);
    
    do{
        temp=num%2;
        num/=2;
        i++;
        if(temp==1){
            n++;
        }
    }while(num!=0);

    printf("%d",n);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值