一、进制转化方法
1、将P进制数x转换为十进制数y(略)
2、将十进制数y转换为Q进制数z:除基取余法
“所谓的基,是指将要转换成的进制Q,因此除基取余的意思就是每次将待转换数除以Q,然后将得到的余数作为低位存储,而商则继续除以Q并进行上面的操作,最后当商为0时,将所有位从高到低输出就可以得到z。”——《算法笔记》
如何理解?举个栗子,现在数组中存有三个有序的十进制位,“5”“3”“2”,当我们获得这三个数位之后,可以用一个循环来得到实际的十进制整数:①5 ②5 * 10+3=53 ③53 * 10+2=532。
int num=0;
int digit[3]={5,3,2};
for(int i=0;i<3;i++){
num*=10;
num+=digit[i];
}
而除基取余法则相当于这个过程的倒置,还是举上面这个栗子:
首先,我们用532%10,得到了2;同时将532/10,得到53(即③53 * 10+2=532这一步骤的倒置);
第二步,用53%10,得到3;同时将53/10,得到5(即②5 * 10+3=53这一步骤的倒置)
最后,用5%10,得到5;同时将5/10,得到0。结束。
int num=532;
int digit[32];
int i=0;
do{
digit[i]=num%10;
num/=10;
i++;
}while(num!=0); //注意这里用do…while而不用while,预防num=0的情况
二、例题
1、求int型正整数在内存中存储时1的个数
描述:
输入一个 int 型的正整数,计算出该 int 型数据在内存中存储时 1 的个数。
数据范围:保证在 32 位整型数字范围内。
输入描述:
输入一个整数(int类型)。
输出描述:
这个数转换成2进制后,输出1的个数。
题解:
#include <stdio.h>
int main() {
int temp;
int num;
int i=0,j=0;
int n=0;
scanf("%d",&num);
do{
temp=num%2;
num/=2;
i++;
if(temp==1){
n++;
}
}while(num!=0);
printf("%d",n);
return 0;
}