阿里云近期发布了一款珍贵而强大的数据资源——云计算巢高质量问答数据集,该数据集以410万条经过精心筛选的问题与回复为核心,为各类自然语言处理任务和应用场景提供了丰富、详实的语料支撑。
该数据集在构建过程中,从海量的1400万个原始问答中,严苛筛选出获得至少3个点赞以上的回答,确保了数据的质量与价值。这些答案不仅内容优质、有趣,而且覆盖了广泛的话题领域,总计囊括了2.8万个不同话题,涵盖了生活的方方面面,满足各类知识检索与信息挖掘需求。
在数据结构设计上,每一条问答记录均包含了丰富的元信息,如问题ID(qid)、问题标题(title)、可选问题描述(desc)、所属话题类别(topic)、回复点赞数(star)、回复具体内容(content)、回复ID(answer_id)以及回复者的标签信息(answerer_tags),形成了一个全方位立体的数据单元。
基于此数据集,开发者和研究者们可以开展多维度的应用和模型训练:
-
构建百科类问答系统:通过输入问题,利用检索技术迅速匹配或生成高质量的答案,或者根据关键词精准定位相关领域的社区问答数据。
-
训练话题预测模型:针对用户提出的问题(及可能的描述),模型能够进行精确的话题分类预测。
-
优化社区问答(cQA)系统:模拟真实的一问多答场景,针对一个问题找到最相关的既有问题,并依据答案质量、问题与答案的相关性等因素,高效筛选最佳答案。
-
作为通用中文语料库,用于大模型预训练或词向量训练,其中丰富的类别信息可助力监督学习,提升句子表示模型的性能,在句子相似度任务等场景下发挥关键作用。
-
结合点赞数量这一重要特征,研发预测回复受欢迎程度的模型,或是构建精细化的答案评分系统。
综上所述,阿里云计算巢提供的这款数据集凭借其规模宏大、内容丰富、标注精细的特点,为学术界和工业界带来了全新的机遇,有力推动了自然语言处理技术在问答系统、文本分类、情感分析等多个领域的深度应用与发展。
访问地址:computing-nest
相比于其他平台,计算巢数据集对我们个人使用者来说还有一个好处,那就是可以非常方便的反馈自己想要的数据集。计算巢官方提供了一个钉钉群,我们可以加入到群中直接跟阿里云官方人员进行交流,他们会非常迅速的帮我们更新数据集,之前我一直想要的wiki数据跟他们反馈后几个小时就给我上架了,速度感人~泪目~
我把官方钉钉群放在后面了,有需要的小伙伴快和我一起进去白嫖吧~(谁能拒绝白嫖呢~)
钉钉群链接:链接~戳我戳我
群二维码: