1101 Quick Sort (25分)
There is a classical process named partition in the famous quick sort algorithm. In this process we typically choose one element as the pivot. Then the elements less than the pivot are moved to its left and those larger than the pivot to its right. Given N distinct positive integers after a run of partition, could you tell how many elements could be the selected pivot for this partition?
For example, given N=5 and the numbers 1, 3, 2, 4, and 5. We have:
1 could be the pivot since there is no element to its left and all the elements to its right are larger than it;
3 must not be the pivot since although all the elements to its left are smaller, the number 2 to its right is less than it as well;
2 must not be the pivot since although all the elements to its right are larger, the number 3 to its left is larger than it as well;
and for the similar reason, 4 and 5 could also be the pivot.
Hence in total there are 3 pivot candidates.
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (≤10
5
). Then the next line contains N distinct positive integers no larger than 10
9
. The numbers in a line are separated by spaces.
Output Specification:
For each test case, output in the first line the number of pivot candidates. Then in the next line print these candidates in increasing order. There must be exactly 1 space between two adjacent numbers, and no extra space at the end of each line.
Sample Input:
5
1 3 2 4 5
Sample Output:
3
1 4 5
解题
给定N个数,判断那几个数左边都是比自己小的,右边都是比自己大的,按从下到大顺序输出;
因为N最大为10^5,逐个遍历左右一定超时,所以需要复杂度为nlogn以下的算法;
动态规划——空间换时间;
建立数组保存i左边最大的数;
建立数组保存i右边最小的数;
遍历i个数,若左边最大小于i,右边最小大于i,则i加入结果数组;
最后排序结果数组,输出即可;
注意点
若结果数组为空,需要输出0换行,然后再输出换行;
MAXL的初始化为第1个数,MINR的初始化为第N个