动态规划+最优子问题+滚动数组 面试题47. 礼物的最大价值

面试题47. 礼物的最大价值

在一个 m*n 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

示例 1:

输入: 
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 12
解释: 路径 13521 可以拿到最多价值的礼物

提示:

0 < grid.length <= 200
0 < grid[0].length <= 200

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/li-wu-de-zui-da-jie-zhi-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

最优子问题解
dp[i][j]保存到i,j位置的路径最大值,该值由dp[i-1][j]和dp[i][j-1]的大值加自身得到,构成最优子问题;

class Solution {
public:
    int maxValue(vector<vector<int>>& grid) {
        int m=grid.size();
        int n=grid[0].size();
        int dp[m][n];
        dp[0][0]=grid[0][0];
        for(int i=1;i<n;i++) dp[0][i]=dp[0][i-1]+grid[0][i];
        for(int i=1;i<m;i++) dp[i][0]=dp[i-1][0]+grid[i][0];
        for(int i=1;i<m;i++)
            for(int j=1;j<n;j++)
                dp[i][j]=max(dp[i-1][j],dp[i][j-1])+grid[i][j];
        return dp[m-1][n-1];
    }
};

滚动数组减少空间消耗
dp[i][j]只受左边和上边影响,故一行数组可以解决问题;

class Solution {
public:
    int maxValue(vector<vector<int>>& grid) {
        int m=grid.size();
        int n=grid[0].size();
        int dp[n];
        dp[0]=grid[0][0];
        for(int i=1;i<n;i++) dp[i]=dp[i-1]+grid[0][i];
        for(int i=1;i<m;i++){
            dp[0]=dp[0]+grid[i][0];
            for(int j=1;j<n;j++)
                dp[j]=max(dp[j],dp[j-1])+grid[i][j];
        }
        return dp[n-1];
    }
};

总结
动态规划问题要先找到最优子问题;
凑硬币的最优子问题是用前i个硬币凑j有几种方法;
该问题的最优子问题是到i,j为止的最大值的和是多少;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值