[SDOI2013] 随机数生成器

题目大意

已知 a , b , p , x 1 , t a,b,p,x_1,t a,b,p,x1,t,生成一个序列 x i + 1 = ( a x i + b )   m o d   p x_{i+1}= (ax_i+b)\bmod p xi+1=(axi+b)modp,问使 x i = t x_i=t xi=t 的最小 i i i 是多少。

题解

这个玩意看上去不太好做,我们考虑转换一下这个数列。
x i + 1 = ( a x i + b )   m o d   p x i + 1 = [ a x i + ( a − 1 ) b a − 1 ]   m o d   p x i + 1 + b a − 1 = ( a x i + a b a − 1 )   m o d   p \begin{aligned} x_{i+1}&=(ax_i+b)\bmod p\\ x_{i+1}&=\left[ax_i+\dfrac{(a-1)b}{a-1}\right]\bmod p\\ x_{i+1}+\dfrac{b}{a-1}&=\left(ax_i+\dfrac{ab}{a-1}\right)\bmod p \end{aligned} xi+1xi+1xi+1+a1b=(axi+b)modp=[axi+a1(a1)b]modp=(axi+a1ab)modp

发现左侧式子恰好是右侧式子的 a a a 倍。转换问题为:
( t + b a − 1 ) × inv ⁡ ( x 1 + b a − 1 ) ≡ a n − 1 ( m o d p ) \left(t+\dfrac{b}{a-1}\right)\times\operatorname{inv}\left(x_1+\dfrac{b}{a-1}\right)\equiv a^{n-1}\pmod p (t+a1b)×inv(x1+a1b)an1(modp)

这个式子可以直接用 BSGS 求解,这一题要注意特判 a = 0    or    1 a=0\;\text{or}\;1 a=0or1 x 1 = t x_1=t x1=t 的情况即可。时间复杂度 O ( p ) \mathcal{O}(\sqrt{p}) O(p )

#include<bits/stdc++.h>
#define int long long
using namespace std;
inline int read(){
    char op=getchar();
    int w=0,s=1;
    while(op<'0'||op>'9'){
        if(op=='-') s=-1;
        op=getchar();
    }
    while(op>='0'&&op<='9'){
        w=(w<<1)+(w<<3)+op-'0';
        op=getchar();
    }
    return w*s;
}
int mod;
int Mul(int a,int b){return (a%mod*b%mod)%mod;}
int Add(int a,int b){return (a+b)%mod;}
int Dec(int a,int b){return (a-b+mod)%mod;}
int Pow(int a,int k){
    int ans=1;
    while(k){
        if(k&1) ans=Mul(ans,a);
        a=Mul(a,a);
        k>>=1;
    }
    return ans;
}
int inv(int x){return Pow(x,mod-2);}
int BSGS(int a,int b,int p){
    if(a%p==0) return -1;
    unordered_map<int,int> mp;
    int k=sqrt(p)+1;
    for(register int i=0,cnt=b;i<=k;i++,cnt=Mul(cnt,a)) mp[cnt]=i;
    int now=Pow(a,k);
    for(register int i=1,cnt=1;i<=k;i++){
        cnt=Mul(cnt,now);
        if(mp.count(cnt)!=0) return i*k-mp[cnt]+1;
    }
    return -1;
}
signed main(){
    int T=read();
    while(T--){
        int p=read(),a=read(),b=read(),x1=read(),xn=read();
        mod=p;
        if(x1==xn){
            printf("1\n");
            continue;
        }
        if(a==0){
            if(xn==b) printf("2\n");
            else printf("-1\n");
            continue;
        }
        if(a==1&&b==0){
            printf("-1\n");
            continue;
        }
        if(a==1){
            printf("%lld\n",Mul(Dec(xn,x1),inv(b))+1);
            continue;
        }
        int t=Mul(b,inv(a-1));
        printf("%lld\n",BSGS(a,Mul(Add(xn,t),inv(Add(x1,t))),p));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值