SVD

要讲述SVD,首先来看一下EVD,也就是特征值分解

EVD

A是一个m * m的实对称矩阵(即 A = A T A = A^T A=AT),那么他可以被分解为如下的形式
公式一:
A = Q ∑ Q T = Q [ λ 1 . . . . . . . . . . . . . . . λ 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . λ n ] Q T A = Q \sum Q^T = Q \begin{bmatrix} \lambda_1 & ... &... &... &... \\ ... & \lambda_2 &... &... &...\\ ... & ... &... &... &... \\ ... & ... &... &... &\lambda_n \end{bmatrix} Q^T A=QQT=Qλ1............λ2.......................................λnQT
其中,Q为正交矩阵,即 Q Q T = I QQ^T = I QQT=I, ∑ \sum 为对角矩阵. λ i \lambda_i λi称之为特征值,Q里面的向量 Q i Q_i Qi称之为特征向量。

SVD

对于一般矩阵而言,我们也想要这样的分解,可以么?答案是肯定的,这时候就需要我们下面所说的SVD分解
这里,A是一个m * n矩阵,我们将它分解为下面的形式:
A = U ∑ V T A = U\sum V^T A=UVT
其中,U和V为单位正交阵( U U T = I UU^T = I UUT=I, V V T = I VV^T = I VVT=I),则,U称之为左奇异矩阵,V称之为右奇异矩阵。 ∑ \sum 仅在主对角线上有值,我们称它为奇异值。且 U ∈ m ∗ m , ∑ ∈ m ∗ n , V ∈ n ∗ n U \in m * m , \sum \in m * n , V \in n * n Umm,mn,Vnn,一般情况下, ∑ \sum 有如下形式
∑ = [ σ 1 0 0 0 0 0 σ 2 0 0 0 0 0 . . . 0 0 0 0 0 0 0 ] \sum = \begin{bmatrix} \sigma_1 & 0 &0 &0 &0 \\ 0 & \sigma_2 &0 &0 &0\\ 0 & 0 &... &0 &0 \\ 0 & 0 &0 &0 &0 \end{bmatrix} =σ10000σ20000...000000000

SVD求解

因为直接求U和V不方便,看如下推导过程
公式二:
A A T = U ∑ V T V ∑ T U T = U ∑ ∑ T U T AA^T = U\sum V^TV{\sum}^T U^T = U\sum {\sum}^TU^T AAT=UVTVTUT=UTUT
公式三:
A T A = V ∑ T U T U ∑ V T = V ∑ T ∑ V T A^TA = V{\sum}^T U^TU\sum V^T = V{\sum}^T \sum V^T ATA=VTUTUVT=VTVT
需要指出的是这里的 ∑ ∑ T \sum {\sum}^T T ∑ T ∑ {\sum}^T \sum T是不一样的,因为他们的维数不同,但是,他们在主对角线上的奇异值是相等的。
可以看出,公式2和公式3与公式1很相似,将 A A T AA^T AAT A T A A^TA ATA利用公式1求出U和V,然后对 ∑ ∑ T \sum {\sum}^T T ∑ T ∑ {\sum}^T \sum T开方,就可以得到所有的奇异值。

summary

从上面的图片的压缩结果中可以看出来,奇异值可以被看作成一个矩阵的代表值,或者说,奇异值能够代表这个矩阵的信息。当奇异值越大时,它代表的信息越多。因此,我们取前面若干个最大的奇异值,就可以基本上还原出数据本身。

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值