1.创建一个二叉树
思想:前序创建,VLR顺序,递归
int main()
{
BTDataType arr[] = { 'A', 'B', 'D', '#', '#', 'G','#','#' ,'C', 'E', '#', '#', 'F'};
int num = sizeof(arr) / sizeof(arr[0]);
int i = 0;
}
//_arr为数组,num为元素个数,i为元素下标
BTNode* BuyNodeTree(BTDataType x)
{
BTNode* newNode = (BTNode*)malloc(sizeof(BTNode));
assert(newNode);
newNode->_data = x;
newNode->_left = NULL;
newNode->_right = NULL;
return newNode;
}
BTNode* BinaryTreeCreate(BTDataType* a, int num, int* i) //前序,VLR
{
if (a[*i] != '#'&& (*i)<num)
{
BTNode* root = BuyNodeTree(a[*i]);
(*i)++;
root->_left = BinaryTreeCreate(a, num, i);
(*i)++;
root->_right = BinaryTreeCreate(a, num, i);
return root;
}
else
return NULL;
}
2.计算树 的节点
思想:左树的节点+右树的节点+1
int BinaryTreeNodeSize(BTNode* root)
{
if (root == NULL)
return 0;
return BinaryTreeNodeSize(root->_left) + BinaryTreeNodeSize(root->_right) + 1;
}
3.计算树的叶节点
思想:左树的叶节点+右树的叶节点
int BinaryTreeLeafSize(BTNode* root)
{
if (root == NULL)
return 0;
if (root->_left == NULL && root->_right == NULL)
return 1;
return BinaryTreeLeafSize(root->_left) + BinaryTreeLeafSize(root->_right);
}
4.计算树第K层的节点
思想:左树的第k-1层节点+右树的k-1层节点
int BinaryTreeLevelKSize(BTNode* root, int k)
{
if (root == NULL)
return 0;
if (k == 1)
return 1;
return BinaryTreeLevelKSize(root->_left, k - 1) + BinaryTreeLevelKSize(root->_right, k - 1);
}
5.计算树的深度
思想:先计算左树的深度,再计算右树的深度,最后返回大的
int BinaryTreeDepth(BTNode* root) //计算树的深度
{
if (root == NULL)
return 0;
int _left = BinaryTreeDepth(root->_left) + 1;
int _right = BinaryTreeDepth(root->_right) + 1;
return _left > _right ? _left : _right;
}
6.查找结点
思想:先在左树中找,找到了,返回,否则,再在右树中找。都没有,返回空
BTNode* FindBinaryTreeNode(BTNode* root, BTDataType x) //查找结点
{
BTNode* _left;
BTNode* _right;
if (root == NULL || root->_data == x)
return root;
_left = FindBinaryTreeNode(root->_left, x);
if (_left)
return _left;
_right = FindBinaryTreeNode(root->_right, x);
if (_right)
return _right;
return NULL;
}
7.前,中,后,序遍历
void BinaryTreePrevOrder(BTNode* root) //前序遍历
{
if (root == NULL)
return;
printf("%c ", root->_data);
BinaryTreePrevOrder(root->_left);
BinaryTreePrevOrder(root->_right);
}
void BinaryTreeInOrder(BTNode* root) //中序遍历
{
if (root == NULL)
return;
BinaryTreeInOrder(root->_left);
printf("%c ", root->_data);
BinaryTreeInOrder(root->_right);
}
void BinaryTreePostOrder(BTNode* root) //后序遍历
{
if (root == NULL)
return;
BinaryTreePostOrder(root->_left);
BinaryTreePostOrder(root->_right);
printf("%c ", root->_data);
}
8.层序遍历
思想:1.创建一个队列,先将根节点压进去
2.再判断其左树和右树节点是否为空,若不为空,就将这个节点的左树和右树节点压进去后,将这个节点pop掉
3.最后直到队列为空停止
void BinaryTreeLevelOrder(BTNode* root) //层序遍历
{
Queue q;
QueueInit(&q);
if (root == NULL)
return;
QueuePush(&q, root);
while (QueueEmpty(&q))
{
BTNode* front = QueueFront(&q);
if (front->_left)
{
QueuePush(&q, front->_left);
}
if (front->_right)
{
QueuePush(&q, front->_right);
}
printf("%c ", front->_data);
QueuePop(&q);
}
}
9.判断是不是完全二叉树
思想:和层序遍历一样,只是把空指针也压了进去,一旦队列中遇到一个NULL,标记一下,若后边出现数据,则不是完全二叉树,若后边全部为空,则是完全二叉树
int BinaryTreeComplete(BTNode* root) //判断是不是完全二叉树
{
int flag = 0;
Queue q;
QueueInit(&q);
if (root == NULL)
return 1;
QueuePush(&q, root);
while (QueueEmpty(&q))
{
BTNode* front = QueueFront(&q);
if (front != NULL)
{
if (flag == 1)
return 0;
QueuePush(&q, front->_left);
QueuePush(&q, front->_right);
}
else
{
flag = 1;
}
QueuePop(&q);
}
return 1;
}
10.重点:
(1)前序遍历(非递归)
思想:1.创建一个栈,创建一个cur总指向一个树的根节点
2.当cur不为空时,直接访问,之后压栈;再访问它的左子树
3.当cur为空时,用top记住此时的栈顶,因为这是cur的双亲结点
4.再出栈,这时,判断top的右子树,即cur=top->right (化为子问题)
void BinaryTreePrevOrderNoD(BTNode* root) //前序遍历非递归
{
Stack s;
StackInit(&s);
BTNode* cur = root; //cur总指向一个树的根节点
if (root == NULL)
{
printf("树为空!\n");
return;
}
while (cur || StackEmpty(&s))
{
//先访问树的左树
while (cur)
{
printf("%c ", cur->_data);
StackPush(&s, cur);
cur = cur->_left;
}
//cur为空,先pop掉,再访问top的右树
BTNode* top = StackTop(&s);
StackPop(&s);
//子问题访问右树
cur = top->_right;
}
}
(2)中序遍历(非递归)
思想:1.创建一个栈,创建一个cur总指向一个树的根节点
2.当cur不为空时,先压栈;再访问它的左子树
3.当cur为空时,用top记住此时的栈顶,因为这是cur的双亲结点,此时再访问节点
4.再出栈,这时,判断top的右子树,即cur=top->right (化为子问题)
void BinaryTreeInOrderNoD(BTNode* root) //中序遍历非递归
{
Stack s;
StackInit(&s);
BTNode* cur = root; //cur总指向一个树的根节点
if (root == NULL)
{
printf("树为空!\n");
return;
}
while (cur || StackEmpty(&s))
{
//先入树的左节点
while (cur)
{
StackPush(&s, cur);
cur = cur->_left;
}
BTNode* top = StackTop(&s);
printf("%c ", top->_data);
StackPop(&s);
cur = top->_right;
}
}
(3)后序遍历(非递归)
思想:1.创建一个栈,创建一个cur总指向一个树的根节点
2.当cur不为空时,先压栈;再访问它的左子树
3.当cur为空时,用top记住此时的栈顶,因为这是cur的双亲结点
4.如果top->right为NULL,则直接访问top,否则cur=top->right (化为子问题)
问题:会导致死循环
解决办法:用一个prev指针标记上一次访问的节点,如果top->right和prev相等,则说明top的右子树访问过了,就可以访问top了
void BinaryTreePostOrderNoD(BTNode* root) //后序遍历非递归
{
BTNode* top;
BTNode* prev=NULL;
Stack s;
StackInit(&s);
BTNode* cur = root; //cur总指向一个树的根节点
if (root == NULL)
{
printf("树为空!\n");
return;
}
while (cur || StackEmpty(&s))
{
while (cur)
{
StackPush(&s, cur);
cur = cur->_left;
}
//这里的cur始终为空
top = StackTop(&s);
if (top->_right == NULL||top->_right == prev)
{
printf("%c ", top->_data);
prev = top; //标记上一次访问的节点,即访问根节点之前,要访问右树节点
StackPop(&s);
}
else
{
cur = top->_right;
}
}
}