bzoj1143[CTSC2008]祭祀river

果然超神的一道题,但是bzoj上面没有第二问额……好吧暂时第二问只有暴力的想法

但是我们可以思考出第一问。

大致就是,因为如果在一个地方建了,那么这个地方能够流到的地方统统都不能建。于是我们可以贪心的思考,我们可以使能够流到的一片所组成的图最小。

而且很显然答案一定会覆盖整幅图,所以我们就想到了floyed处理出每个点能够流通到的地方,然后对于这个做一个最大匹配。然而我不知道为什么……

于是:

来自cxjyxx_me的。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<bitset>
#define LL long long
#define fo(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
inline LL read()
{
	LL d=0,f=1;char s=getchar();
	while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
	while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();}
	return d*f;
}
#define N 105
#define M 1005
int a[N][N];
int n,m;
bool c[N][N];
int l[N],ans=0;
bitset<N>y;

void floyed()
{
//	memset(c,0,sizeof(c));
	fo(k,1,n)
	{
		fo(i,1,n)
		if(k!=i)
		{
			fo(j,1,n)
			if(i!=j)
			{
				if(a[i][k]&&a[k][j]) c[i][j]=1;
//				if(c[i][j])cout<<i<<' '<<j<<endl;
			}
		}
	}
}

bool match(int x)
{
	fo(i,1,n)
	if(y[i]==0&&c[x][i])
	{
		y[i]=1;
		if(l[i]==0||match(l[i]))
		{
			l[i]=x;
			return 1;
		}
	}
	return 0;
}

void work()
{
	memset(l,0,sizeof(l));
	fo(i,1,n)
	{
		y.reset();
		if(match(i))ans++;
	}
}

void check()
{
	fo(i,1,n)
	fo(j,1,n)
	if(i!=j&&c[i][j]) cout<<i<<' '<<j<<endl;
}

int main()
{
	memset(c,0,sizeof(c));
	n=read(),m=read();
	fo(i,1,m)
	{
		int x=read(),y=read();
		a[x][y]=1;
		c[x][y]=1;
	}
	floyed();
//	check();
	work();
	cout<<n-ans<<endl;
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值