1143: [CTSC2008]祭祀river
Time Limit: 10 Sec Memory Limit: 162 MB
Description
在遥远的东方,有一个神秘的民族,自称Y族。他们世代居住在水面上,奉龙王为神。每逢重大庆典, Y族都
会在水面上举办盛大的祭祀活动。我们可以把Y族居住地水系看成一个由岔口和河道组成的网络。每条河道连接着
两个岔口,并且水在河道内按照一个固定的方向流动。显然,水系中不会有环流(下图描述一个环流的例子)。
由于人数众多的原因,Y族的祭祀活动会在多个岔口上同时举行。出于对龙王的尊重,这些祭祀地点的选择必
须非常慎重。准确地说,Y族人认为,如果水流可以从一个祭祀点流到另外一个祭祀点,那么祭祀就会失去它神圣
的意义。族长希望在保持祭祀神圣性的基础上,选择尽可能多的祭祀的地点。
Input
第一行包含两个用空格隔开的整数N、M,分别表示岔口和河道的数目,岔口从1到N编号。
接下来M行,每行包含两个用空格隔开的整数u、v,
描述一条连接岔口u和岔口v的河道,水流方向为自u向v。
N≤100M≤1000
Output
第一行包含一个整数K,表示最多能选取的祭祀点的个数。
Sample Input
4 4
1 2
3 4
3 2
4 2
Sample Output
2
【样例说明】
在样例给出的水系中,不存在一种方法能够选择三个或者三个以上的祭祀点。包含两个祭祀点的测试点的方案有两种:
选择岔口1与岔口3(如样例输出第二行),选择岔口1与岔口4。
水流可以从任意岔口流至岔口2。如果在岔口2建立祭祀点,那么任意其他岔口都不能建立祭祀点
但是在最优的一种祭祀点的选取方案中我们可以建立两个祭祀点,所以岔口2不能建立祭祀点。对于其他岔口
至少存在一个最优方案选择该岔口为祭祀点,所以输出为1011。
题解
这题求得是最长反链=最小链覆盖,用二分图匹配求解最大匹配,然后n(点数)-最大匹配。
那么怎么建边呢?只要i可以到j,那么就可以建一条边,我们可以用Floyd建。
代码如下
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int n,m,Ans,grl[105];
bool usd[105],f[105][105];
bool Fnd(int x){
for(int i=1;i<=n;i++)
if(f[x][i]&&!usd[i]){
usd[i]=1;
if(!grl[i]||Fnd(grl[i])){grl[i]=x;return 1;}
}
return 0;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("prob.in","r",stdin);
freopen("prob.out","w",stdout);
#endif
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
int x,y;scanf("%d%d",&x,&y);
f[x][y]=1;
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++) f[i][j]|=f[i][k]&&f[k][j];
for(int i=1;i<=n;i++) f[i][i]=0;
for(int i=1;i<=n;i++) memset(usd,0,sizeof(usd)),Ans+=Fnd(i);
printf("%d\n",n-Ans);
return 0;
}