题目传送门:http://codevs.cn/problem/1173/
题目大意:有一个有n个点的有向图,每个点有一个权值,图中m对点之间有边相连,可能是单向的边,也可能是双向的。
现要找一条从点1至点n的路径,使得在这条路径中有两个点的权值差值最大(权值小的点在前)。
思路:利用SPFA的最短路算法作为主要算法,用dis[i]记录从1到i的路径中所得到的两点间权值的最大值,然后用spfa来求dis来求dis数组的最大值
#include<stdio.h>
#include<algorithm>
#include<string.h>
#include<queue>
const int MAXN=200007;
using namespace std;
queue<int> q;
int head[MAXN],nextt[MAXN],dis[MAXN],tot,e[2000077],buy[MAXN];
int vis[MAXN];
template<class T>void read(T &x)
{
x=0;int f=0;char ch=getchar();
while(ch<'0'||ch>'9') {f|=(ch=='-');ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}
x=f?-x:x;
}
void add(int u,int v)
{
e[++tot]=v;
nextt[tot]=head[u];
head[u]=tot;
}
int main()
{
int x,y,z,m,n;
memset(dis,-1,sizeof(dis));
read(n),read(m);
for(int i=1;i<=n;++i)
read(buy[i]);
for(int i=1;i<=m;++i)
{
read(x),read(y),read(z);
add(x,y);
if(z==2) add(y,x);
}
q.push(1);
while(!q.empty())
{
int x=q.front();q.pop();
vis[x]=233;
for(int i=head[x];i;i=nextt[i])
{
int y=e[i];
if(dis[y]==-1||dis[y]<buy[y]-buy[x])
{
vis[y]=0;
if(buy[y]-buy[x]>0) dis[y]=buy[y]-buy[x];
}
if(dis[y]<dis[x])
{
vis[y]=0;
if(dis[x]>dis[y]) dis[y]=dis[x];
}
if(vis[y]==0)
{
vis[y]=1;
q.push(y);
}
}
}
if(dis[n]==-1) printf("0");
else printf("%d",dis[n]);
return 0;
}