用tensorflow实现minist手写数字识别

本文通过代码示例介绍了如何使用TensorFlow库训练一个神经网络模型,实现MNIST数据集上的手写数字识别任务,涵盖了数据预处理、模型构建、训练和评估等关键步骤。
摘要由CSDN通过智能技术生成

代码:

import pandas as pd
import tensorflow as tf
import numpy as np
#加载数据
train=pd.read_csv('../Desktop/DataSets/MINIST/train.csv')
test=pd.read_csv('../Desktop/DataSets/MINIST/test.csv')
X_train=train.iloc[:,1:].values
y_train=train.iloc[:,0].values
X_test=test.iloc[:,:].values
print(len(X_test))
print(len(y_train))
#数据预处理
X_train=X_train.astype(np.float)
X_train=np.multiply(X_train,1.0/225)
X_test=X_test.astype(np.float)
X_test=np.multiply(X_test,1.0/225)
image_size=X_train.shape[1]
#像正无穷大取整
image_width=image_height=np.ceil(np.sqrt(image_size)).astype(np.uint8)

#对结果进行处理
#y_count就是类别数 np.unique对列表去重并且从大到小排序
y_count=np.unique(y_train).shape[0]
print(y_count)
#进行one-hot编码
def one_hot(labels,num_classes):
    nums_labels=labels.shape[0]#知道标签数
    index=np.arange(nums_labels)*num_classes
    labels_one_hot=np.zeros((nums_labels,num_classes))#初始化标签数*类别数的0矩阵
    #ravel()将多维数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值