刚获融资的Espresso Systems遇严重风险:知识产权不清、团队深陷道德丑闻

据美通社和外电综合报道, Translucence Research Inc作为开发公司的区块链项目Espresso Systems日前正在面临融资后的重新背调和法务评估等重大风险。据知情人士透露,有投资者及潜在投资者们发现,Espresso Systems项目关键技术知识产权归属存疑,联合创始人Ben Fisch、Charles Lu、 Benedikt Bünz 等人存在各类道德问题。

1. Espresso Systems创始成员因盗取知识产权等被起诉

Espresso Systems项目创始人Ben Fisch以及Charles Lu等人曾在同领域公司Temujin Labs Inc.任职。Espresso Systems作为Translucence Research Inc.的新产品,与原公司同样主打隐私技术。该产品被指是复制了Temujin Labs Inc.产品Findora的代码。也正因如此,Espresso Systems正遇投资人等业内人士的质疑。

2021年底,Espresso Systems及其创始成员因盗取知识产权被Temujin Labs Inc起诉,并由加利福尼亚州北区联邦地区法院旧金山分院受理,指控还包括窃取商业秘密、商业诽谤、故意干扰合同关系等。

其中被告包括Espresso Systems ( Translucence Research Inc.)、Ben Fisch、Charles Lu、Benedikt Bünz、Nathan McCarty、Fernando Krell、 Philippe Camacho Cortina、Binyi Chen和 Luoyuan(Alex)Xiong等20多个公司主体或个人。

比如,作为斯坦福大学博士的Ben Fisch,在创办Espresso Systems前,曾是Temujin Labs Inc.的CTO和顾问。

据介绍,Ben Fisch在职期间,曾利用技术手段盗取了Temujin的全部代码和专有技术(主要是Temujin 的区块链产品Findora项目相关),同时在斯坦福社区和区块链社区四处散布Temujin的谣言,旨在让Espresso Systems在与Temujin的竞争中赢得先机。

2. “欺骗与破坏”:团队商业道德存疑

据了解,Ben Fisch曾对部分投资人谎称已经取得Temujin所有代码的使用权,称其已经把Temujin核心工程师招募到新公司。同时,其还对外界透露他们还在原公司留有“内应”,可以随时知道Temujin的动向,因此声称Espresso Systems作为竞争性新公司可以比老公司做的更快、更好。

而该“内应”或为同为被告的Binyi Chen (音译 陈彬毅)。据知情人士透露,陈彬毅、Fernando Krell等前雇员,在公司任职的最后阶段不仅领取原公司的薪水,还利用其在原公司职位以及其对原公司系统和业务的接触,试图保留对其GitHub上某些存储库的后门访问权限,从而窃取研发成果。

Espresso Systems创始成员Charles Lu同样参与了窃取商业机密、专利技术的行为。其蓄意破坏原公司亚马逊网络服务(AWS),致使开发数据遭到改动。Charles Lu被指曾威胁原公司向其支付500万美元“封口费“,否则会散布有关公司创始人的不实信息,此要求被原公司拒绝。

3. “失信且失德”:创始团队存在道德污点

据知情人士透露,Ben Fisch等人在道德层面也存在污点,比如Ben Fisch言而无信,以及Charles Lu“性骚扰”公司女性、破坏行业风气等。

Ben Fisch曾得到原公司的大力扶持,帮助其进行学术研究。据公开诉讼文件描述,Ben Fisch在任期间为推进其个人利益,以及学术目标等原因,存在一定的欺骗和操纵Temujin的行为,其开展的很多业务几乎与公司的业务方向无关,Ben Fisch最后并没有按照事先约定,履行相关义务。

Charles Lu同样被曝出存在道德丑闻,其在工作场所涉嫌性骚扰女员工。Charles Lu还曾提出过“如果一个项目骗走了投资者所有的钱,那么可以着手开始第二个项目,继续筹集资金。”等唯利是图的言论,受到同行业者质疑。

据业内资深法律专业人士指出:知识产权归属是衡量项目价值的关键事项,个人道德也是衡量团队长期稳定发展的关键要素。根据美国硅谷以往此类事件经验,一旦赔偿或将是亿元美元级,科技公司投融资尽调过程务必重视这两项要素。

据了解,该项目本轮融资由Greylock Partners和Electric Capital领投,红杉资本、Blockchain Capital、Slow Ventures等参投。随着上述事实的不断发酵,越来越多的投资者,开始重新审视该项目并审慎进行背景调查。

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值