pandas.read_csv 作为常用的读取数据的常用API,使用频率非常高,但是API中可选的参数有哪些呢?
答案是:
.read_csv(filepath_or_buffer , sep=’, ‘ , delimiter=None , header=’infer‘ , names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, nrows=None, na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, iterator=False, chunksize=None, compression=’infer’, thousands=None, decimal=b’.’, lineterminator=None, quotechar=’”’, quoting=0, escapechar=None, comment=None, encoding=None, dialect=None, tupleize_cols=None, error_bad_lines=True, warn_bad_lines=True, skipfooter=0, skip_footer=0, doublequote=True, delim_whitespace=False, as_recarray=None, compact_ints=None, use_unsigned=None, low_memory=True, buffer_lines=None, memory_map=False, float_precision=None)
据说了解20%,应用80%:
- sep=’,’ # 以,为数据分隔符
- shkiprows= 10 # 跳过前十行
- nrows = 10 # 只去前10行
- parse_dates = [‘col_name’] # 指定某行读取为日期格式
- index_col = [‘col_1’,‘col_2’] # 读取指定的几列
- error_bad_lines = False # 当某行数据有问题时,不报错,直接跳过,处理脏数据时使用
- na_values = ‘NULL’ # 将NULL识别为空值
下面就详细解读下,个别参数的意义。(我个人认为有用的)
-
filepath_or_buffer : 路径 URL 可以是http, ftp, s3, 和 file.
-
sep: 指定分割符,默认是’,’C引擎不能自动检测分隔符,但Python解析引擎可以
-
delimiter: 同sep
-
delimiter_whitespace: True or False 默认False, 用空格作为分隔符等价于spe=’\s+’如果该参数被调用,则delimite不会起作用
-
header: 指定第几行作为列名(忽略注解行),如果没有指定列名,默认header=0; 如果指定了列名header=None
-
names 指定列名,如果文件中不包含header的行,应该显性表示header=None
-
index_col: 默认为None 用列名作为DataFrame的行标签,如果给出序列,则使用MultiIndex。如果读取某文件,该文件每行末尾都有带分隔符,考虑使用index_col=False使panadas不用第一列作为行的名称。
不知道你有没有看懂index_col最后一句话。反正我是没看懂,尝试了以后也没啥效果。后来尝试用下面方法来解决上述问题:
其中test.txt 的内容为:
1;2;3;4;5;
6;7;8;2;5;
注意这里how一定要用all,不然的话,一旦某一列出现na就会把整列数据删掉。path2='datas/test.txt' df1 = pd.read_csv(path2, sep=';',low_memory=False,header=None) df1= df1.dropna(axis=1,how='all') df1.head() ## 获取前五行数据查看查看
-
usecols: 默认None 可以使用列序列也可以使用列名,如 [0, 1, 2] or [‘foo’, ‘bar’, ‘baz’]
-
as_recarray:默认False , 将读入的数据按照numpy array的方式存储,0.19.0版本后使用
pd.read_csv(…).to_records()。 注意,这种方式读入的na数据不是显示na,而是给以个莫名奇妙的值 -
squeeze: 默认为False, True的情况下返回的类型为Series
-
prefix:默认为none, 当header =None 或者没有header的时候有效,例如’x’ 列名效果 X0, X1, …
-
mangle_dupe_cols :默认为True,重复的列将被指定为’X.0’…’X.N’,而不是’X’…’X’。如果传入False,当列中存在重复名称,则会导致数据被覆盖。
-
dtype: E.g. {‘a’: np.float64, ‘b’: np.int32} 指定数据类型
-
engine: {‘c’, ‘python’}, optional 选择读取的引擎目前来说C更快,但是Python的引擎有更多选择的操作
-
skipinitialspace: 忽略分隔符后的空格,默认false,
-
skiprows: list-like or integer or callable, default None 忽略某几行或者从开始算起的几行
-
skipfooter: 从底端算起的几行,不支持C引擎
-
nrows: int 读取的行数
-
na_values: 默认None NaN包含哪些情况,默认情况下, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’. 都表现为NAN
-
keep_default_na: 如果na_values被定义,keep_default_na为False那么默认的NAN会被改写。 默认为True
-
na_filter: 默认为True, 针对没有NA的文件,使用na_filter=false能够提高读取效率
-
skip_blank_lines 默认为True,跳过blank lines 而且不是定义为NAN
-
thousands 千分位符号,默认‘,’
-
decimal 小数点符号,默认‘.’
-
encoding: 编码方式
-
memory_map如果为filepath_or_buffer提供了文件路径,则将文件对象直接映射到内存上,并直接从那里访问数据。使用此选项可以提高性能,因为不再有任何I / O开销。
-
low_memory 默认为True 在块内部处理文件,导致分析时内存使用量降低,但可能数据类型混乱。要确保没有混合类型设置为False,或者使用dtype参数指定类型。请注意,不管怎样,整个文件都读入单个DataFrame中,请使用chunksize或iterator参数以块形式返回数据。 (仅在C语法分析器中有效)