1. 并查集的基本概念
并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。这一类问题近几年来反复出现在信息学的国际国内赛题中。其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。
并查集是一种树型的数据结构,用于处理一些不相交集合(disjoint sets)的合并及查询问题。常常在使用中以森林来表示。
2. 并查集的实现
2.1 初始化
把每个点所在集合初始化为其自身。
通常来说,这个步骤在每次使用该数据结构时只需要执行一次,无论何种实现方式,时间复杂度均为 O ( n ) O(n) O(n)。
代码:
//2.1
//int a[10010];
for(int i=1;i<=n;i++) a[i]=i;
2.2 合并
以上的初始化其实是体现各个元素都是根节点,其存储的内容即是它们所在的树的根节点。也就是说,两棵树的合并只需让其中一棵树的根节点接在另一棵树的任意位置即可,至于判断两个元素是否位于同一棵树,下面的查找会体现。
代码:
//2.2
//int a[10010],i,j;
cin>>i>>j;
a[i]=j;
2.3 查找
重点来了!
查找元素所在的集合,即根节点。
为了避免判断两个元素是否位于同一棵树时,两个元素的存储内容未经更新,导致直接调用比较时出现错误,我们需要对真正的根节点进行查找。因查找是不断递进的,所以此处用递归实现。
初步代码:
//2.3
//int a[10010];
int find(int f){
if(a[f]==f){
//判断自身是否为根节点
return f;//是则直接返回根节点
}
return find(a[f]);//否则继续查找
}
此处我们会发现,若在两棵树合并时把合并的那棵树的根节点直接赋值另一颗树的根节点,以及在查找时不断将子节点赋值为根节点,会大大减小复杂度,故代码如下:
//改进2.2
//int a[10010],i,j;
cin>>i>>j;
a[find(i)]=find(j);
//改进2.3
//int a[10010];
int find(int f){
if(a[f]==f){
return f;
}
return a[f]=find(a[f]);
}
3. 例题
洛谷P3367【模板】并查集
题目描述
如题,现在有一个并查集,你需要完成合并和查询操作。
输入格式
第一行包含两个整数 N , M N,M N,M ,表示共有 N N N 个元素和 M M