矩阵快速幂一篇通

60 篇文章 0 订阅
54 篇文章 0 订阅

概述

矩阵快速幂,顾名思义,就是矩阵乘法与快速幂的结合,可以将时间复杂度优化到log级别。
当数据范围中图的尺寸较小,而时间、变换次数、步数等的范围较大(通常在10^9左右)时,可以考虑矩阵快速幂问题
矩阵快速幂的关键在于构造转移矩阵

快速幂

解析

由于

x^a * x^b = x^(a+b)

逆向来看,对于一个较大的指数k,我们可以进行拆分:

x^k = x^a1 * x^a2 *…(a1+a2+…=k)

由于二进制拆分的唯一存在性,我们就可以把k拆成若干个2的幂数作为a序列,将其对应的乘幂求出,并乘在一起就能得到x^k了
时间复杂度log k

代码

ll ksm(ll x, int w) {//求x的w次幂
    ll ans = 1;
    while (w) {
        if (w & 1)
            ans = (ll)(ans * x) % mod;
            //mod是取模用的
        x = (x * x) % mod;
        w >>= 1;
    }
    return ans;
}

矩阵运算定义

加法

对于两个大小完全相同的矩阵,定义二者相加为每个对应元素相加(比较简单,不细说了)

乘法

对于两个矩阵AB,若A的行数等于B的列数,则二者可以相乘
换言之,ab的矩阵A可以和bc的矩阵B相乘,结果是一个a*c的矩阵C,单次相乘时间复杂度为abc 的乘积
对于每一个c中的元素:

c[i][j]=∑a[i][p]+b[p][j](1<=p<=b)

简单说就是顶针式的乘积累加
容易证明,矩阵乘法满足结合律,但是不满足交换律
对于一个行列相等的方阵,可以不断累乘自身

单位矩阵

如果一个矩阵的结构为:
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
则称它为一个单位矩阵
对于一个a*b的矩阵A,它与一个边长为b的矩阵相乘,结果还是A本身
单位矩阵在矩阵运算中起着单位1的作用

矩阵简单的运算就是这些,接下来我们通过一些例题由浅入深,看看矩阵快速幂如何应用吧

一、斐波拉契(基础模板)

万物之始

题目描述

斐波拉契的定义为:

f[1]=f[2]=1;
f[n]=f[n-1]+f[n-2](n>=3)

(不会真的有人不知道吧)
现在要你求出第k项取模后的结果
(k<=2^63)

解析

我们发现:
对于一个行矩阵:

f[n] f[n-1]

尝试构造出一个转移矩阵M
(转移矩阵是矩阵题目的灵魂,多为方阵)

1 1
1 0

那么两者相乘后就会得到:

f[n]+f[n-1] f[n]

根据斐波拉契的定义,上面的结果就是:

f[n+1] f[n]

所以,要求第k项的值,就只需要把矩阵f[2] f[1]乘上k-2次转移矩阵即可
这样就可以用快速幂提速了
(由于本题原矩阵过于简单,其实代码实现时我们都不需要让那个行矩阵出现)

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int mod=1e9+7;
ll a,b,c,k;
ll ans[4][4],res[4][4],trans[4][4];
void mul1(){//res*res
	memset(trans,0,sizeof(trans));
	for(int i=1;i<=2;i++){
		for(int j=1;j<=2;j++){
			for(int p=1;p<=2;p++){
				trans[i][j]+=res[i][p]*res[p][j];
				trans[i][j]%=mod;
			}
		}
	}
	for(int i=1;i<=2;i++){
		for(int j=1;j<=2;j++){
			res[i][j]=trans[i][j];
		}
	}
}
void mul2(){//res*ans
	memset(trans,0,sizeof(trans));
	for(int i=1;i<=2;i++){
		for(int j=1;j<=2;j++){
			for(int p=1;p<=2;p++){
				trans[i][j]+=ans[i][p]*res[p][j];
				trans[i][j]%=mod;
			}
		}
	}
	for(int i=1;i<=2;i++){
		for(int j=1;j<=2;j++){
			ans[i][j]=trans[i][j];
		}
	}
}
void ksm(ll w){
	while(w){
		if(w&1) mul2();
		mul1();
		w>>=1;
	}
	return;
}
void print(){
	for(int i=1;i<=2;i++){
		for(int j=1;j<=2;j++){
			printf("%d ",ans[i][j]);
		}
		printf("\n");
	}
}
int main()
{
	ans[1][1]=ans[2][2]=1;
	res[1][1]=res[1][2]=res[2][1]=1;
	scanf("%lld",&a);
	if(a<=2) {printf("1");return 0;}
	ksm(a-2);
//	print();
	printf("%lld",(ans[1][1]+ans[2][1])%mod);
    return 0;
}

二、行为方案(实际应用)

题目描述

在这里插入图片描述

解析

定义dp[i][j][t]为经过t时间从i走到j的方案数
不难想到转移

dp[i][j][t]=∑dp[i][p][t-1]*dp[p][j][1]

我们发现出现了矩阵乘法标志性的顶针结构
也就是说,想要从t-1转移到t,只需要把t-1状态的矩阵与状态1的矩阵相乘就行了
换言之,询问t状态的矩阵,就是求状态1矩阵的t次幂
这样在提速的同时,也就把第三维空间优化掉了
这样就转化为快速幂问题了
接下来就是原始矩阵的构造问题

首先肯定要把存在边的点连上:

dp[from][to]=1

还可以停留在原点,也就相当于一个自环:

dp[i][i]=1;(1<=i<=n)

对于自爆,我们可以把0结点当成自爆的状态,在任何一个点均可自爆,所以:

dp[i][0]=1(1<=i<=n)

由于自爆后不能向任何状态转移了,所以0结点没有任何出边
最后的答案就是∑dp[1][i] (0<=i<=n)
这样本题就结束了

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int mod=2017;
const int N=150;
ll a,b,c,k;
int n,m;
ll ans[N][N],res[N][N],trans[N][N];
void mul1(){//res*res
	memset(trans,0,sizeof(trans));
	for(int i=0;i<=n;i++){
		for(int j=0;j<=n;j++){
			for(int p=0;p<=n;p++){
				trans[i][j]+=res[i][p]*res[p][j];
				trans[i][j]%=mod;
			}
		}
	}
	for(int i=0;i<=n;i++){
		for(int j=0;j<=n;j++){
			res[i][j]=trans[i][j];
		}
	}
}
void mul2(){//res*ans
	memset(trans,0,sizeof(trans));
	for(int i=0;i<=n;i++){
		for(int j=0;j<=n;j++){
			for(int p=0;p<=n;p++){
				trans[i][j]+=ans[i][p]*res[p][j];
				trans[i][j]%=mod;
			}
		}
	}
	for(int i=0;i<=n;i++){
		for(int j=0;j<=n;j++){
			ans[i][j]=trans[i][j];
		}
	}
}
void ksm(ll w){
	while(w){
		if(w&1) mul2();
		mul1();
		w>>=1;
	}
	return;
}
void print(){
	for(int i=0;i<=n;i++){
		for(int j=0;j<=n;j++){
			printf("%d ",ans[i][j]);
		}
		printf("\n");
	}
}
int main()
{
	scanf("%d%d",&n,&m);
	for(int i=0;i<=n;i++) ans[i][i]=1;
	for(int i=1;i<=m;i++){
		int a,b;
		scanf("%d%d",&a,&b);
		res[a][b]=res[b][a]=1;
	}
	for(int i=0;i<=n;i++) res[i][i]=1;
	for(int i=1;i<=n;i++) res[i][0]=1;
	int t;
	scanf("%d",&t);
	ksm(t);
	int tot=0;
	for(int i=0;i<=n;i++){
		tot+=ans[1][i];
	}
//	print();
	printf("%d",tot%mod);
    return 0;
}

三、矩阵求和(子矩阵作为矩阵元素)

题目描述

在这里插入图片描述

解析

对于矩阵A,我们构造转移矩阵:

AI
0I

(I表示与A边长相等的单位矩阵,矩阵套矩阵表示把小矩阵值套进大矩阵里)
比如,当A为:

2 3
1 5

时,转移矩阵为:

2 3 1 0
1 5 0 1
0 0 1 0
0 0 0 1

使它与自身相乘,得到:

A^2I+A
0I

再乘一次:

A^3I+A+A^2
0I

这样我们就可以得到规律了
只需要把这个转移矩阵构造出来后乘上k次幂在把左上角减去单位矩阵输出即可
注意:取模减法需要判断一下会不会减成负的!
(连ybt评测的答案似乎都没有注意。。。)
在这里插入图片描述

代码

#include<bits/stdc++.h>
using namespace std;
#define ll long long
int mod=2017;
const int N=150;
ll a,b,c,k;
int n,m;
ll ans[N][N],res[N][N],trans[N][N];
void mul1(){//res*res
	memset(trans,0,sizeof(trans));
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			for(int p=1;p<=n;p++){
				trans[i][j]+=res[i][p]*res[p][j];
				trans[i][j]%=mod;
			}
		}
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			res[i][j]=trans[i][j];
		}
	}
}
void mul2(){//res*ans
	memset(trans,0,sizeof(trans));
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			for(int p=1;p<=n;p++){
				trans[i][j]+=ans[i][p]*res[p][j];
				trans[i][j]%=mod;
			}
		}
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			ans[i][j]=trans[i][j];
		}
	}
}
void ksm(ll w){
	while(w){
		if(w&1) mul2();
		mul1();
		w>>=1;
	}
	return;
}
void print(){
	for(int i=1;i<=n;i++){
		for(int j=1+n;j<=2*n;j++){
			if(i+n==j) ans[i][j]--;
//			if(ans[i][j]<0) ans[i][j]+=mod;
			printf("%lld ",ans[i][j]);
		}
		printf("\n");
	}
}
int main()
{
	scanf("%d%d%d",&n,&m,&mod);
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++) scanf("%lld",&res[i][j]);
	}
	for(int j=n+1;j<=2*n;j++){
		res[j][j]=res[j-n][j]=1;
	}
	n<<=1;
	for(int i=1;i<=n;i++) ans[i][i]=1;
	ksm(m+1);
	n>>=1;
	print();
    return 0;
}

四、最短路径(对矩阵乘法灵活的定义方式)

题目描述

在这里插入图片描述

解析

定义dp[i][j][k]:从i到j,经过k条边的最短路径
易得转移方程:

dp[i][j][k]=min(dp[i][j][k],dp[i][p][k-1]+dp[p][j][1];

我们发现出现了顶针结构,但似乎运算从乘积累加变成了求min
那么把运算的定义改一下不就好了!
(这样修改之后不再有单位矩阵的概念,好在本题也不需要)
还有一些细节问题:

1.在原始矩阵中dp[i][i]应该为正无穷而不是0,换言之,经过一条边走到原处的方案在没有自环的情况下应该是不可能的
2.由于边数<=100,所以点不会超过200个,但编号会达到1000。如果直接用原编号,会超时。所以本题需要对点进行离散化处理

代码:

#include<bits/stdc++.h>
using namespace std;
#define ll long long
int mod=2017;
const int N=1500;
int s,e,n,m,k;
int mx;
int a,b,c,d;
ll ans[N][N],res[N][N],trans[N][N];
int id[N*100],tot=0;
void mul1(){//res*res
	memset(trans,0x3f,sizeof(trans));
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			for(int p=1;p<=n;p++){
				trans[i][j]=min(trans[i][j],res[i][p]+res[p][j]);
//				trans[i][j]%=mod;
			}
		}
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			res[i][j]=trans[i][j];
		}
	}
}
void mul2(){//res*ans
	memset(trans,0x3f,sizeof(trans));
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			for(int p=1;p<=n;p++){
				trans[i][j]=min(trans[i][j],ans[i][p]+res[p][j]);
//				trans[i][j]%=mod;
			}
		}
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			ans[i][j]=trans[i][j];
		}
	}
}
void ksm(ll w){
	while(w){
		if(w&1) mul2();
		mul1();
		w>>=1;
	}
	return;
}
void print(){
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
//			if(ans[i][j]<0) ans[i][j]+=mod;
			if(ans[i][j]>2e9) printf("-1 ");
			else printf("%lld ",ans[i][j]);
		}
		printf("\n");
	}
	printf("\n");
}
void print_res(){
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
//			if(ans[i][j]<0) ans[i][j]+=mod;
			if(res[i][j]>2e9) printf("-1 ");
			else printf("%lld ",res[i][j]);
		}
		printf("\n");
	}
}
int main()
{
	scanf("%d%d%d%d",&k,&n,&s,&e);
	memset(res,0x3f,sizeof(res));
	memset(ans,0x3f,sizeof(ans));
	for(int i=1;i<=n;i++){
		scanf("%d%d%d",&c,&a,&b);
		if(!id[a]) id[a]=++tot;
		if(!id[b]) id[b]=++tot;
		a=id[a],b=id[b];
		res[a][b]=res[b][a]=c;
//		mx=max(mx,max(a,b));
//		printf("a=%d b=%d v=%d\n",a,b,c);
	}
	n=tot;
//	print_res();
	for(int i=1;i<=n;i++) ans[i][i]=0;
	ksm(k);
//	mul2();
//	print();
//	mul2();
//	print();
	printf("%lld",ans[id[s]][id[e]]);
    return 0;
}
/*
1 6 6 4
11 4 6
4 4 8
8 4 9
6 6 8
2 6 9
3 8 9
*/

thanks for reading!

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值