CF906D:Power Tower(拓展欧拉定理、暴力)

解析

大降智题。
受相逢是问候的影响,第一眼直接线段树,写完WA完才发现这个玩意没有结合律。
然后开始用 x y z = ( x y ) y z − 1 x^{y^z}=(x^y)^{y^{z-1}} xyz=(xy)yz1 这样的东西嗯做,结果只是在玩泥巴。

lemma:迭代求 φ \varphi φ 的次数是 log 级别的。

证明:偶数的 φ \varphi φ 至少折半,对于 n > 2 n>2 n>2 φ ( n ) \varphi(n) φ(n) 恒为偶数,因为 gcd ⁡ ( i , n ) = g c d ( n − i , n ) \gcd(i,n)=gcd(n-i,n) gcd(i,n)=gcd(ni,n)

所以直接暴力往后扫模数为1就返回就可以了。

//luogu
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ull unsigned long long
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define ok debug("OK\n")
using namespace std;

const int N=1e5+100;
//const int mod=998244353;
inline ll read(){
  ll x(0),f(1);char c=getchar();
  while(!isdigit(c)) {if(c=='-')f=-1;c=getchar();}
  while(isdigit(c)) {x=(x<<1)+(x<<3)+c-'0';c=getchar();}
  return x*f;
}

#define pr pair<ll,bool>
#define mkp make_pair
inline pr ksm(ll x,ll k,int mod){
  ll res(1);bool flag=0;  
  while(k){
    if(k&1){
      res=res*x;
      if(res>=mod){
	res%=mod;flag=1;
      }
    }
    x=x*x;
    if(x>=mod&&k>1){
      x%=mod;
      flag=1;
    }
    k>>=1;
  }
  return mkp(res,flag);
}

map<int,int>mp;
int n,m;
int w[N];

inline int getphi(int x){
  if(mp.count(x)) return mp[x];
  int ori=x;
  int w=sqrt(x),res=x;
  for(int i=2;i<=w;i++){
    if(x%i==0){
      res=1ll*res*(i-1)/i;
      while(x%i==0) x/=i;
    }
  }
  if(x>1) res=1ll*res*(x-1)/x;
  return mp[ori]=res;
}

pr calc(int l,int r,int mod){
  if(l==r){return mkp(w[l]%mod,w[l]>=mod);}
  if(mod==1) return mkp(0,1);
  int phi=getphi(mod);
  pr o=calc(l+1,r,phi);
  return ksm(w[l],o.first+o.second*phi,mod);
}

signed main(){
#ifndef ONLINE_JUDGE
  freopen("a.in","r",stdin);
  freopen("a.out","w",stdout);
#endif
  n=read();int mod=read();
  for(int i=1;i<=n;i++) w[i]=read();
  m=read();
  for(int i=1;i<=m;i++){
    int l=read(),r=read();
    printf("%lld\n",calc(l,r,mod).first);
  }
  return 0;
}
/*
 */
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值