群论学习笔记

60 篇文章 0 订阅
6 篇文章 0 订阅

所谓群论,就是对群体行为问题的讨论。

(逃)

前言

个人学起来比较困难的一部分。
主要的难点在于抽象,常常会陷入虚空…
但当发现理论推出来的花里胡哨的东西和事实相符时还是挺爽的。
行文中如果有错误或者不严谨的地方,欢迎指正,感谢。
没怎么看懂但也许有用的网站

基本定义:

群是由非空集合 G G G 和关于 G G G 的二元运算 ⋅ \cdot 组成的代数结构,满足如下性质:

  1. 封闭性。 a , b ∈ G ⇒ a ⋅ b ∈ G a,b\in G\Rightarrow a\cdot b\in G a,bGabG
  2. 结合律。 ( a ⋅ b ) ⋅ c = a ⋅ ( b ⋅ c ) (a\cdot b)\cdot c=a\cdot(b\cdot c) (ab)c=a(bc)
  3. 标识元(单位元)。 G G G 中存在一个元素 e e e,使得 ∀ a ∈ G , a ⋅ e = e ⋅ a = a \forall a\in G,a\cdot e=e\cdot a=a aG,ae=ea=a,这样的元素是独一无二的。
  4. 逆元。 ∀ a ∈ G , ∃ b ∈ G , a ⋅ b = e \forall a\in G,\exists b\in G,a\cdot b=e aG,bG,ab=e。此时称 b b b a − 1 a^{-1} a1

子群

对于一个群 ( G , × ) (G,\times) (G,×),若 H H H G G G 的一个子集,且 ( H , × ) (H,\times) (H,×) 也构成一个群,则称 ( H , × ) (H,\times) (H,×) ( G , × ) (G,\times) (G,×) 的一个子群。记为 H ≤ G H\le G HG
G G G { e } \{e\} {e} 称为 G G G 的两个平凡子群。
子群检验法 H ≤ G ⇔ ∀ h , g ∈ H , h ⋅ g − 1 ∈ H H\le G\Leftrightarrow \forall h,g\in H,h\cdot g^{-1}\in H HGh,gH,hg1H

陪集

H ≤ G , g ∈ G H\le G,g\in G HG,gG,则称 H g = { h ⋅ g , h ∈ H } Hg=\{h\cdot g,h\in H\} Hg={hg,hH} H H H G G G 内关于 g g g右陪集(左陪集就是在左边,同理)
陪集具有如下性质:

  1. ∣ H g ∣ = ∣ H ∣ |Hg|=|H| Hg=H

因为对于 h 1 , h 2 ∈ H , h 1 ≠ h 2 h1,h2\in H,h1\ne h2 h1,h2H,h1=h2,都有 g ⋅ h 1 ≠ g ⋅ h 2 g\cdot h1\ne g\cdot h2 gh1=gh2

  1. g ∈ H g g\in Hg gHg

因为 e ∈ H e\in H eH

  1. H g = H ⇔ g ∈ H Hg=H\Leftrightarrow g\in H Hg=HgH

左往右:由于性质二, g ∈ H g g\in Hg gHg;若 g ∉ H g\notin H g/H,不可能有 H g = H Hg=H Hg=H
右往左:由于封闭性, H g Hg Hg 不可能取到 H H H 之外的元素;对于 ∀ h 1 ∈ H \forall h1\in H h1H,设 h 1 ⋅ g − 1 = h 2 ∈ H h1\cdot g^{-1}=h2\in H h1g1=h2H。则有 h 1 = h 2 ⋅ g h1=h2\cdot g h1=h2g,所以 h 1 ∈ H g h1\in Hg h1Hg

  1. H a = H b ⇔ a ⋅ b − 1 ∈ H Ha=Hb\Leftrightarrow a\cdot b^{-1}\in H Ha=Hbab1H

左往右:因为 ∀ h 1 ∈ H , ∃ h 2 ∈ H , h 1 ⋅ a = h 2 ⋅ b \forall h1\in H,\exist h2\in H,h1\cdot a=h2\cdot b h1H,h2H,h1a=h2b,也就有 a ⋅ b − 1 = h 2 ⋅ h 1 − 1 a\cdot b^{-1}=h2\cdot h1^{-1} ab1=h2h11,而 h 2 ⋅ h 1 − 1 ∈ H h2\cdot h1^{-1}\in H h2h11H
右往左: ∀ h 1 ∈ H , h 1 ⋅ a ∈ H a , ∃ h 2 = h 1 ⋅ ( a ⋅ b − 1 ) ∈ H → h 1 ⋅ a = h 2 ⋅ b , h 2 ⋅ b ∈ H b \forall h1\in H,h1\cdot a\in Ha,\exist h2=h1\cdot(a\cdot b^{-1})\in H\to h1\cdot a=h2\cdot b,h2\cdot b\in Hb h1H,h1aHa,h2=h1(ab1)Hh1a=h2b,h2bHb。(其实就是左往右反过来推)

  1. H a ∩ H b ≠ ∅ → H a = H b Ha\cap Hb\ne \emptyset\to Ha=Hb HaHb=Ha=Hb

H a ∩ H b ≠ ∅ → ∃ h 1 , h 2 ∈ H , h 1 ⋅ a = h 2 ⋅ b → a ⋅ b − 1 = h 2 ⋅ h 1 − 1 ∈ H → H a = H b Ha\cap Hb\ne \emptyset\to\exist h1,h2\in H,h1\cdot a=h2\cdot b\to a\cdot b^{-1}=h2\cdot h1^{-1}\in H\to Ha=Hb HaHb=h1,h2H,h1a=h2bab1=h2h11HHa=Hb

  1. H H H 的所有右陪集的并集为 G G G

由于封闭性,不可能取到 G G G 之外的元素。
由于 e ∈ H e\in H eH g g g 取遍 G G G 的所有元素就可以保证 G G G 的所有元素都被取到。

拉格朗日定理

H ≤ G ⇒ ∣ H ∣ H\le G\Rightarrow |H| HGH 整除 ∣ G ∣ |G| G

结合陪集的性质即可得。由性质 1 , 5 , 6 1,5,6 1,5,6 H H H 所有本质不同的陪集互不相交,大小均为 ∣ H ∣ |H| H,共同组成了 G G G ∣ G ∣ ∣ H ∣ \dfrac{|G|}{|H|} HG 也就是 H H H 本质不同陪集的数量。

正规子群

H ≤ G H\le G HG,且 ∀ a ∈ G , a H = H a \forall a\in G,aH=Ha aG,aH=Ha,则称 H H H G G G 的正规子群。平凡子群总是正规子群。

交换群

又称为阿贝尔群,简单说就是在满足群基本性质的基础上,运算又满足交换律的群。
交换群的所有子群都是正规子群。

商群

H H H G G G 的正规子群,定义 G / H = { g H , g ∈ G } G/H=\{gH,g\in G\} G/H={gH,gG}
商群可以理解为一种划分,由拉格朗日定理, G / H G/H G/H ∣ G ∣ ∣ H ∣ \dfrac{|G|}{|H|} HG 个大小为 ∣ H ∣ |H| H,互不相交的群组成。

G G G 中元素 x x x 的阶等于最小的正整数 d d d,使得 x d = e x^d=e xd=e,有限群中元素的阶一定存在。
有限群的阶定义为群内元素的个数,无限群的阶规定为 0 0 0
阶的一些性质:

  1. G G G 中元素 x x x 的阶整除 G G G 的阶。

构造一个 G G G 的子群 H = { e , x , x 2 , . . . , x d − 1 } H=\{e,x,x^2,...,x^{d-1}\} H={e,x,x2,...,xd1} ∣ H ∣ = d |H|=d H=d,由拉格朗日定理 d d d 整除 ∣ G ∣ |G| G

  1. G G G 中两个元素 a , b a,b a,b 的阶 m , n m,n m,n 互素,则 a s b t = e ⇒ a s = e & b t = e a^s b^t=e\Rightarrow a^s=e\&b^t=e asbt=eas=e&bt=e

由条件有 a s = b − t a^s=b^{-t} as=bt,同时 m m m 次方: b − t m = a s m = ( a m ) s = e b^{-tm}=a^{sm}=(a^{m})^s=e btm=asm=(am)s=e,由于 gcd ⁡ ( m , n ) = 1 \gcd(m,n)=1 gcd(m,n)=1,就有 b − t = e b^{-t}=e bt=e,即 b t = e b^t=e bt=e a s = e a^s=e as=e 同理。

  1. g 1 , g 2 ∈ G g1,g2\in G g1,g2G 的阶分别为 d 1 , d 2 d1,d2 d1,d2,则存在一个元素 g ∈ G g\in G gG,其阶为 l c m ( d 1 , d 2 ) lcm(d1,d2) lcm(d1,d2)

gcd ⁡ ( d 1 , d 2 ) = d \gcd(d1,d2)=d gcd(d1,d2)=d。考虑元素 g 1 d ⋅ g 2 g1^d\cdot g2 g1dg2。其中 g 1 d g1^d g1d g 2 g2 g2 的阶数互质。由性质二, g 1 d ⋅ g 2 g1^d\cdot g2 g1dg2 的阶数就是 d 1 d × d 2 = l c m ( d 1 , d 2 ) \dfrac{d1}{d}\times d2=lcm(d1,d2) dd1×d2=lcm(d1,d2)

置换

定义

有限集合到自身的双射(即一一对应)称为置换
可以表示为: ( 1 , 2 , 3 , … , n a 1 , a 2 , a 3 , … , a n ) \begin{pmatrix}1,2,3,\dots,n\\a_1,a_2,a_3,\dots,a_n\end{pmatrix} (1,2,3,,na1,a2,a3,,an),表示把第 a i a_i ai 个元素映射到位置 i i i。在第一行为 1 , 2 , 3... 1,2,3... 1,2,3... 时,可以省去第一行。
置换 f f f 作用与状态 a a a,写作 f ∗ a f*a fa。(这个写法似乎各处并不一样)
例:
( 3 , 2 , 1 , 4 ) ∗ ( a , b , c , d ) = ( c , b , a , d ) (3,2,1,4)*(a,b,c,d)=(c,b,a,d) (3,2,1,4)(a,b,c,d)=(c,b,a,d)

置换的乘法

定义 f 1 ∗ f 2 f1*f2 f1f2 表示先进行 f 2 f2 f2,再进行 f 1 f1 f1
( a 1 , a 2 , . . . , a n ) ∗ ( b 1 , b 2 , . . . , b n ) = ( b a 1 , b a 2 , . . . , b a n ) (a_1,a_2,...,a_n)*(b_1,b_2,...,b_n)=(b_{a_1},b_{a_2},...,b_{a_n}) (a1,a2,...,an)(b1,b2,...,bn)=(ba1,ba2,...,ban)
例:
( 3 , 2 , 1 , 4 ) ∗ ( 2 , 1 , 3 , 4 ) = ( 3 , 1 , 2 , 4 ) (3,2,1,4)*(2,1,3,4)=(3,1,2,4) (3,2,1,4)(2,1,3,4)=(3,1,2,4)

循环

如果一个置换形如 ( a 1 , a 2 , a 3 , . . . , a n − 1 , a n a 2 , a 3 , a 4 , . . . , a n , a 1 ) \begin{pmatrix}a_1,a_2,a_3,...,a_{n-1},a_n\\a_2,a_3,a_4,...,a_n,a_1\end{pmatrix} (a1,a2,a3,...,an1,ana2,a3,a4,...,an,a1),则称其为一个循环
如果两个循环不包含相同元素,则称它们为不相交的
任何置换都由若干个不相交置换的乘积。

置换群

元素个数为 n n n所有排列的集合 N N N 与置换乘法组成一个群 ( N , ∗ ) (N,*) (N,)
其子群称为置换群
其中的单位元又叫做恒等置换 I I I

群作用

对于一个群 ( G , ∗ ) (G,*) (G,) 和集合 N N N,给出一个二元函数 φ ( g , n ) \varphi(g,n) φ(g,n),满足如下性质:

  1. φ ( e , n ) = n \varphi(e,n)=n φ(e,n)=n
  2. φ ( a , φ ( b , n ) ) = φ ( a ∗ b , n ) \varphi(a,\varphi(b,n))=\varphi(a*b,n) φ(a,φ(b,n))=φ(ab,n)

则称群 G G G 作用于集合 N N N
(如果你没明白这个定义想干什么,可以把 G G G 想成置换群,把 N N N 想成状态)

等价类

若一个状态可以通过置换群内的某个置换到达另一个状态,则称它们属于同一个等价类(也就是本质相同)。

不动点

f ∗ x = x f*x=x fx=x,则称 x x x f f f 的一个不动点。

Burnside引理

重头戏来勒!

内容

对于作用于集合 X X X 的群 G G G
X / G X/G X/G 为在 G G G 作用下等价类的集合。(这里虽然并不满足商群的定义,但是写成形式化语言后长的非常像,即 { G x , x ∈ X } \{Gx,x\in X\} {Gx,xX}
则有:
∣ X / G ∣ = 1 ∣ G ∣ ∑ g ∈ G ∣ X g ∣ |X/G|=\frac{1}{|G|}\sum_{g\in G}|X^g| X/G=G1gGXg
其中 X g = { x ∣ g ∗ x = x , x ∈ X } X^g=\{x|g*x=x,x\in X\} Xg={xgx=x,xX}

证明

法1 轨道-稳定子定理

对于一个置换群 G G G 和状态 x x x,定义 G ( x ) = { g ∗ x , g ∈ G } G(x)=\{g*x,g\in G\} G(x)={gx,gG} x x x轨道(其实就是等价类), G x = { g ∣ g ∗ x = x , g ∈ G } G^x=\{g|g*x=x,g\in G\} Gx={ggx=x,gG} x x x稳定子(其实就是不动点)。

轨道-稳定子定理: ∣ G ∣ = ∣ G x ∣ ∣ G ( x ) ∣ |G|=|G^x||G(x)| G=GxG(x)

证明:
首先, G x G^x Gx 是一个 G G G 的子群,我们按照定义逐条验证:

  1. 封闭性: f ∗ x = x , g ∗ x = x → ( f ∗ g ) ∗ x = f ∗ ( g ∗ x ) = x f*x=x,g*x=x\to(f*g)*x=f*(g*x)=x fx=x,gx=x(fg)x=f(gx)=x,即 f ∈ G x , g ∈ G x → f ∗ g ∈ G x f\in G^x,g\in G^x\to f*g\in G^x fGx,gGxfgGx
  2. 结合律:置换乘法本身始终有结合律。
  3. 单位元:显然 e ∗ x = x e*x=x ex=x
  4. 逆元: f ∗ x = x → x = f − 1 ∗ x f*x=x\to x=f^{-1}*x fx=xx=f1x

既然是子群,根据拉格朗日定理,就有:
∣ G ∣ = ∣ G x ∣ ∣ G : G x ∣ |G|=|G^x||G:G^x| G=GxG:Gx
其中 ∣ G : G x ∣ |G:G^x| G:Gx 表示 G x G^x Gx G G G 中本质不同的陪集数量。
那么现在只需要证明 ∣ G : G x ∣ = ∣ G ( x ) ∣ |G:G^x|=|G(x)| G:Gx=G(x)

尝试在 G x G^x Gx 的陪集和 x x x 的轨道之间建立双射关系。

  1. f ∗ x = g ∗ x f*x=g*x fx=gx(两个置换在 x x x 轨道的同一位置),则有 ( g − 1 ∗ f ) ∗ x = x (g^{-1}*f)*x=x (g1f)x=x,即 g − 1 ∗ f ∈ G x g^{-1}*f\in G^x g1fGx,由前面陪集的性质四,也就有 f G x = g G x fG^x=gG^x fGx=gGx
  2. f G x = g G x fG^x=gG^x fGx=gGx(两个置换生成的陪集相同),由于第一条使用的均为充要条件,反过来推依然成立,也就有 f ∗ x = g ∗ x f*x=g*x fx=gx

所以我们得到,如果轨道相同则陪集相同,如果陪集相同则轨道相同,建立起了双射关系,命题得证。

有了轨道-稳定子定理,证明 Burnside 引理就不难了。
∑ g ∈ G X g = ∑ x ∈ X G x = ∑ x ∈ X ∣ G ∣ ∣ G ( x ) ∣ = ∣ G ∣ ∑ x ∈ X 1 G ( x ) = ∣ G ∣ ∑ Y ∈ X / G ∑ x ∈ Y 1 ∣ Y ∣ = ∣ G ∣ ∑ Y ∈ X / G 1 = ∣ G ∣ ∣ X / G ∣ \sum_{g\in G}X^g=\sum_{x\in X}G^x\\=\sum_{x\in X}\frac{|G|}{|G(x)|}\\=|G|\sum_{x\in X}\frac{1}{G(x)}\\=|G|\sum_{Y\in X/G}\sum_{x\in Y}\frac{1}{|Y|}\\=|G|\sum_{Y\in X/G}1\\=|G||X/G| gGXg=xXGx=xXG(x)G=GxXG(x)1=GYX/GxYY1=GYX/G1=GX/G
得证。

法2

一本通上的魔法操作。
被中间一大堆莫名其妙啰哩啰嗦的过程以及横空出世的“显然”整蒙了好久
但看明白了确实还是挺优雅的。

考虑一个大小为 k k k 的等价类 S S S
从里面任选一个状态 a 1 a_1 a1
那么设 g 1 g_1 g1 为满足 g 1 ∗ a 1 = a 1 g_1*a_1=a_1 g1a1=a1 的任意一个置换。(必然存在,至少可以是恒等置换 I I I
那么对于 S S S 中任意元素 a i a_i ai,设 f i f_i fi 为满足 f i ∗ a 1 = a i f_i*a_1=a_i fia1=ai 的任意一个置换,那么 W i = { g ∣ g ∗ a 1 = a i , g ∈ G } W_i=\{g|g*a_1=a_i,g\in G\} Wi={gga1=ai,gG} 也就可以写成 { f i , f i ∗ g 1 , f i ∗ g 1 2 , . . . , f i ∗ g 1 d − 1 } \{f_i,f_i*g_1,f_i*g_1^2,...,f_i*g_1^{d-1}\} {fi,fig1,fig12,...,fig1d1},其中 d d d g 1 g_1 g1 的阶数。
那么可以看出,所有的 ∣ W i ∣ |W_i| Wi 都是相等的,且由于 W i W_i Wi 必然互不相交,并集为全集,就有 ∣ W 1 ∣ = ∣ W 2 ∣ = . . . = ∣ W k ∣ = ∣ G ∣ k |W_1|=|W_2|=...=|W_k|=\dfrac{|G|}{k} W1=W2=...=Wk=kG
也就是说,对于 S S S 中每个元素 a i a_i ai G a i = { g ∣ g ∗ a i = a i , g ∈ G } G^{a_i}=\{g|g*a_i=a_i,g\in G\} Gai={ggai=ai,gG} 的大小均为 ∣ G ∣ k \dfrac{|G|}{k} kG S S S 中一共有 k k k 个元素,那么总共就贡献了 ∣ G ∣ |G| G 个不动点。
每个等价类都贡献 ∣ G ∣ |G| G 个不动点,那么 Burnside 引理中的式子也就自然可得了。

Polya 定理

个人感觉 Polya 定理根本不配叫个定理
Burnside 给了我们计算本质不同方案的公式:
∣ X / G ∣ = 1 ∣ G ∣ ∑ g ∈ G ∣ X g ∣ |X/G|=\frac{1}{|G|}\sum_{g\in G}|X^g| X/G=G1gGXg
而 Polya 的用途就是快速计算 Burnside 的式子。
关键就是计算这个 ∣ X g ∣ |X^g| Xg
以染色问题为例,假设每个点可以染 m m m 中颜色,或者说, a 1... n a_{1...n} a1...n 都可以在 [ 1 , m ] [1,m] [1,m] 中取值。
对于一个置换 g g g,设其循环的个数为 c ( g ) c(g) c(g),要想成为不动点,显然每个循环的颜色必须相同,而不同循环的颜色相互独立,因此不动点个数为 m c ( g ) m^{c(g)} mc(g)
那么 Burnside 的式子也就可以写为:
∣ X / G ∣ = 1 ∣ G ∣ ∑ g ∈ G m c ( g ) |X/G|=\frac{1}{|G|}\sum_{g\in G}m^{c(g)} X/G=G1gGmc(g)
然后嘞?
没了。
没了?
没了!
Polya 就这?
Polya 就这!
你上你也行
个人实在感觉这个东西和 Burnside 引理放在一起是对 Burnside 的侮辱…
也可能是我对 Polya 的理解还不太到位吧。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值