题目描述
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
输入
输入含有多组测试数据。
每组数据的第一行是两个正整数,n,k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
输出
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
样例输入
2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1
样例输出
2
1
一道简单的dfs应用的题目
遍历找出字符'#'
然后判断这个位置上的字符'#'是否已经走过
若没走过,先放下然后递归再拿起来,依次类推
dfs模板
void dfs()
{
for()
{
if(!vis[])
{
vis[]=1;
dfs();
vis[]=0;
}
}
}
AC代码
#include<cstring>
#include<iostream>
#include<cstdio>
using namespace std;
char GG[8][8];
int vis[8];
int ans;
int n,k;
void dfs(int a,int b)
{
if(a>n&&b!=0)
return;
if(b>n-a)
return;
if(b==0)
{
ans++;
return;
}
for(int i=0; i<n; i++)
{
if(GG[a][i]=='.')
continue;
if(!vis[i])
{
vis[i]=1;
dfs(a+1,b-1);
vis[i]=0;
}
}
dfs(a+1,b);
}
int main()
{
while(scanf("%d%d",&n,&k)!=EOF)
{
if(n==-1&&k==-1)
break;
for(int i=0; i<n; i++)
{
scanf("%s",GG[i]);
}
memset(vis,0,sizeof(vis));
ans=0;
dfs(0,k);
printf("%d\n",ans);
}
return 0;
}