棋盘问题

题目描述


在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

输入


输入含有多组测试数据。
每组数据的第一行是两个正整数,n,k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。 


输出


对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。

样例输入


2 1
#.
.#
4 4
...#
..#.
.#..
#...
-1 -1

样例输出


2
1

 
 
 一道简单的dfs应用的题目
遍历找出字符'#'
然后判断这个位置上的字符'#'是否已经走过
若没走过,先放下然后递归再拿起来,依次类推

dfs模板

void dfs()
{
    for()
    {
        if(!vis[])
        {
            vis[]=1;
            dfs();
            vis[]=0;
        }
    }
}

 
 
AC代码

#include<cstring>
#include<iostream>
#include<cstdio>
using namespace std;
char GG[8][8];
int vis[8];
int ans;
int n,k;


void dfs(int a,int b)
{
    if(a>n&&b!=0)
        return;
    if(b>n-a)
        return;
    if(b==0)
    {
        ans++;
        return;
    }
    for(int i=0; i<n; i++)
    {
        if(GG[a][i]=='.')
            continue;
        if(!vis[i])
        {
            vis[i]=1;
            dfs(a+1,b-1);
            vis[i]=0;
        }
    }
    dfs(a+1,b);
}


int main()
{
    while(scanf("%d%d",&n,&k)!=EOF)
    {
        if(n==-1&&k==-1)
            break;
        for(int i=0; i<n; i++)
        {
            scanf("%s",GG[i]);
        }
        memset(vis,0,sizeof(vis));
        ans=0;
        dfs(0,k);
        printf("%d\n",ans);
    }
    return 0;
}


 
 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值