POJ 1061 青蛙的约会 数学题

开始用了暴力枚举,后来一看数据这么大,估计肯定超时,无奈上网搜索了一下,考察的是扩展欧几里德算法,还有比较大的整数_int64的处理。 转自http://apps.hi.baidu.com/share/detail/16229280   设过s步后两青蛙相遇,则必满足以下等式:     (x+m*s)-(y+n*s)=k*l(k=0,1,2....)   稍微变一下形得:     (n-m)*s+k*l=x-y 令n-m=a,k=b,x-y=c,即     a*s+b*l=c   只要上式存在整数解,则两青蛙能相遇,否则不能。   首先想到的一个方法是用两次for循环来枚举s,l的值,看是否存在s,l的整数解,若存在则输入最小的s, 但显然这种方法是不可取的,谁也不知道最小的s是多大,如果最小的s很大的话,超时是明显的。   其实这题用欧几里德扩展原理可以很快的解决,先来看下什么是欧几里德扩展原理:   欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。其计算原理依赖于下面的定理:   定理:gcd(a,b) = gcd(b,a mod b)   证明:a可以表示成a = kb + r,则r = a mod b   假设d是a,b的一个公约数,则有   d|a, d|b,而r = a - kb,因此d|r   因此d是(b,a mod b)的公约数   假设d 是(b,a mod b)的公约数,则   d | b , d |r ,但是a = kb +r   因此d也是(a,b)的公约数   因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证   欧几里德算法就是根据这个原理来做的,其算法用C++语言描述为:    int Gcd(int a, int b)   {   if(b == 0)   return a; return Gcd(b, a % b);   }   当然你也可以写成迭代形式:   int Gcd(int a, int b)   {   while(b != 0)   {   int r = b;    b = a % b;    a = r;   }   return a;   }   本质上都是用的上面那个原理。   补充: 扩展欧几里德算法是用来在已知a, b求解一组x,y使得a*x+b*y=Gcd(a,b)(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。下面是一个使 用C++的实现:   int exGcd(int a, int b, int &x, int &y)   {   if(b == 0)   {   x = 1;   y = 0;    return a;   }   int r = exGcd(b, a % b, x, y);   int t = x;   x = y;   y = t - a / b * y;    return r;   }   把这个实现和Gcd的递归实现相比,发现多了下面的x,y赋值过程,这就是扩展欧几里德算法的精髓。   可以这样思考:   对于a' = b, b' = a % b 而言,我们求得 x, y使得 a'x + b'y = Gcd(a', b')   由于b' = a % b = a - a / b * b (注:这里的/是程序设计语言中的除法)   那么可以得到:   a'x + b'y = Gcd(a', b') ===>   bx + (a - a / b * b)y = Gcd(a', b') = Gcd(a, b) ===>   ay +b(x - a / b*y) = Gcd(a, b)   因此对于a和b而言,他们的相对应的p,q分别是 y和(x-a/b*y).   在网上看了很多关于不定方程方程求解的问题,可都没有说全,都只说了一部分,看了好多之后才真正弄清楚不定方程的求解全过程,步骤如下:   求a * x + b * y = n的整数解。   1、先计算Gcd(a,b),若n不能被Gcd(a,b)整除,则方程无整数解;否则,在方程两边同时除以Gcd(a,b),得到新的不定方程a' * x + b' * y = n',此时Gcd(a',b')=1; 2、利用上面所说的欧几里德算法求出方程a' * x + b' * y = 1的一组整数解x0,y0,则n' * x0,n' * y0是方程a' * x + b' * y = n'的一组整数解;   3、根据数论中的相关定理,可得方程a' * x + b' * y = n'的所有整数解为: x = n' * x0 + b' * t y = n' * y0 - a' * t (t为整数)     上面的解也就是a * x + b * y = n 的全部整数解。 view plaincopy to clipboardprint? #include using namespace std; __int64 gcd(__int64 a,__int64 b) { if (b == 0) return a; return gcd(b,a%b); } void exgcd(__int64 a,__int64 b,__int64 & m,__int64 &n) { if (b == 0) { m = 1; n = 0; return; } exgcd(b,a%b,m,n); __int64 t; t = m; m = n; n = t - a/b*n; } int main(){ __int64 m,n,x,y,l,a,b,c,k1,k2,r,t; scanf("%I64d%I64d%I64d%I64d%I64d",&x,&y,&m,&n,&l); a = n - m; b = l; c = x - y; r = gcd(a,b); if (c%r) { cout<<"Impossible"<

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值