【每日打卡】Day17:青蛙的约会 C++实现

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/qq_40184885/article/details/89817897

描述

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

输入

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

输出

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

样例输入

1 2 3 4 5

样例输出

4

代码

#include <bits/stdc++.h>

using namespace std;

int x,y,n,m,L,ans = 0;

void solve(int x, int y, int n, int m, int L){
    int flag = 0;
    //超级暴力解法  计算机一秒运行100000000次是没有问题的  如果找不到 就输出不可能
    for(int i = 0; i < 100000000; i ++){
        x += n;
        if(x > L) x -= L;
        y += m;
        if(y > L) y -= L;
        ans ++;
        //cout << x << " " << y << endl;
        if(x == y){
            cout << ans;
            flag = 1;
            break;
        }
    }    
    if(flag == 0)
        cout << "Impossible";
}


int main(){
    cin >> x >> y >> n >> m >> L;
    solve(x,y,n,m,L);
    return 0;
}

 

展开阅读全文

青蛙约会,结果不正确

01-05

[code=C/C++]rn/******************************************rn题目:青蛙的约会 rnTime Limit: 1000ms rnMemory limit: 10000kB rn题目描述 rn两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它rnrn们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见rnrn面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙rnrn在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青rnrn蛙是否能够碰面,会在什么时候碰面。rn我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我rnrn们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳nrnrn米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。rnrn输入 rn输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。 rn输出 rn输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible" rn样例输入 rn1 2 3 4 5样例输出 rn4rn*******************************************/rnrn/******************************************rn分析:rn引入变量,跳跃次数:trn假如A、B相遇,则rn (x+mt)%L==(y+nt)%Lrn<=> (x+mt)-(y+nt)==pLrn<=> (x-y)+(m-n)t==pLrn<=> (m-n)t+L(-p)==y-xrn令m-n=>A,L=>B,y-x=>C rn即求解 At+B(-p)=C 的整数解rnrn定理:Extern Eculid Algorithm,存在整数A和B,存在整数x和y,使得Ax+By=Gcd(A,B)rn命题:若A、B和C为整数。Ax+By=C存在整数解 <=> C%Gcd(A,B)=0rn证明:rn充分条件 rnA和B为整数,存在整数x和y,使得Ax+By=C;rn则变换等式Gcd(A,B)*(A'x+B'y)=C,因A',B',x,y均为整数,因此C%Gcd(A,B)=0。得证。rn必要条件rn若C%Gcd(A,B)=0, 根据Extern Eculid Algorithm,Ax'+By'=Gcd(A,B),等式两边乘以c/Gcd(A,B),得证。rnrn求解x和y,通解结构为 rnx = x0 + B/gcd(A,B)*k rny = y0 - A/gcd(A,B)*k (k为整数)rn或者rnx = x0 - B/gcd(A,B)*k rny = y0 + A/gcd(A,B)*k (k为整数)rnrnAx+By=A(x0+B/gcd(A,B)*k) + B(y0-A/gcd(A,B)*k)rn或者rnAx+By=A(x0-B/gcd(A,B)*k) + B(y0+A/gcd(A,B)*k)rnrn根据Extern Eculid Algorithm求解出Ax+By=Gcd(A,B)的特解x0'和y0'rn之后两边乘上c/gcd(A,B),得到Ax+By=C的特解x0和y0rn即A(x'*c/Gcd(A,B))+B(y'*c/Gcd(A,B))==Gcd(A,B)*c/Gcd(A,B);rnrn因为题目要求的是最小的正整数解,因此,需要转换,观察通解结构可得,x%(B/gcd(A,B)*k)==某一数,该数必为最小整数解。rnrn但是这里要注意 -1mod5在计算机上不是4,而是-1,因此,在考虑负数的时候,要将其转换成正数。rn*******************************************/ rnrn#includernrn//扩展欧几里得rn__int64 exGcd(__int64 f,__int64 g,__int64 &A,__int64 &B)rnrn if(f%g==0)rn rn A=0;rn B=1;rn return g;rn rn __int64 gcd =exGcd(g,f%g,A,B);rn __int64 tempB=B;rn B=A-B*f/g;rn A=tempB;rn return gcd;rnrnrnint main()rnrn __int64 x,y,m,n,L;rn scanf("%I64d %I64d %I64d %I64d %I64d",&x,&y,&m,&n,&L);rn __int64 gcd;rn __int64 A,B;rn __int64 a,b,c;rn a=m-n;rn b=L;rn c=y-x;rnrn if(a<0)rn rn a=-a;rn c=-c;rn rn gcd=exGcd(b,a,B,A);rn if(c%gcd!=0||m==n)rn rn printf("Impossible");rn rn elsern rn b/=gcd;rn c/=gcd;rn A=A*c; //得到特解rn A=A%b+b; //保证为正数,计算机的mod运算与真实的mod运算有点不大一样rn A=A%b; //保证最小解rn printf("%I64d",A); //注意不能使用%d,会溢出rn rn return 0;rnrnrn[/code]rnrn以上是我的分析和编写的代码,我查过网上的资料,除了讲一堆扩展欧几里得算法之外,都是讲得不清不楚的,总之一句话,提交不正确。rn对比正确的代码,除了欧几里得算法我是判断余数为0时返回,而正确代码是除数为0时返回(其实一样的),其它的部分都一致。 论坛

青蛙约会”问题

10-28

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 rn我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面rn输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。rn输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"rn但是,我得出的结果不对,怎么看也看不出哪里不对了。请各位帮我分析一下好吗?谢谢了!rn下面是我的程序:rn[code=C/C++]#includernint l;rnint num(int x,int y,int m,int n)rnrn int i,a;rn if(m>n)rn rn a=l/m;rn for(i=1;;i++)rn if(m*i-n*i==l+x-y)rn rn return i;rn break;rn rn rn if(my)rn a=num(x,y,m,n);rn if(x 论坛

没有更多推荐了,返回首页