【计算机专业选题推荐】基于hadoop大数据的农产品数据分析可视化系统

精彩专栏推荐订阅:在下方主页👇🏻👇🏻👇🏻👇🏻
💖🔥作者主页计算机毕设木哥🔥 💖

一、项目介绍

在当今数字化时代,农业领域面临着庞大的数据挑战,但同时也意识到大数据分析的巨大潜力。针对这一问题,《基于Hadoop大数据的农产品数据分析可视化系统》的开发具有重要的背景意义和价值。该系统利用Hadoop技术处理农产品数据,实现了海量数据的高效存储和快速计算。通过数据挖掘和分析,系统能够深入了解农产品市场的趋势、消费者需求和供应链动态。更为重要的是,该系统融合了先进的可视化技术,将复杂的数据转化为直观的图表和图形,为农业从业者提供了直观、易懂的数据展示,帮助他们做出更明智的决策。该项目的意义不仅仅在于提高农业生产的效率和质量,更在于推动农产品市场的健康发展,帮助农民获得更好的收入。同时,通过深入分析农产品数据,我们能够为农业领域的科研和政策制定提供宝贵的参考意见,推动农业现代化进程。基于Hadoop大数据的农产品数据分析可视化系统的开发将为农业领域带来革命性的变化,促使农业更加智能、高效、可持续发展,助力农业迈向数字化时代的新高度。

二、开发环境

  • 大数据技术:Hadoop、Spark、Hive
  • 开发技术:Python、Django框架、Vue、Echarts
  • 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

三、系统展示

页面展示:
在这里插入图片描述

四、代码展示

import sys 
sys.path.append(r'F:\workplace\Python\ml\LSTM-Agricultural-Products-Prices\Time-Series-Prediction-with-LSTM/')  
from utils import eemd_tools, data_tools, networks_factory, data_metrics
from utils.constants import const


# fix random seed for reproducibility
np.random.seed(7)


data_multi = np.load(const.PROJECT_DIR + "data/eemd/apple/data_multi.npy")
print("# shape", data_multi.shape)  # not .shape()
# print(data_multi)
n_dims = data_multi.shape[1]  # magic number !
print("# dims: ", n_dims)


# normalize features
scaler = data_tools.Po_MinMaxScaler
scaled = scaler.fit_transform(data_multi)

output = 1
lag = const.LOOK_BACK

reframed = data_tools.series_to_supervised(scaled, lag, output)
# drop columns we don't want to predict
index_drop = [-j-1 for j in range(data_multi.shape[1] - 1)]
reframed.drop(reframed.columns[index_drop], axis=1, inplace=True)
data_supervised = reframed.values
print("# shape:", reframed.shape)
print(len(data_multi) == len(reframed) + lag)
# print(reframed.head(3))

# split into train and test sets
train_size = int(len(data_supervised) * const.TRAIN_SCALE)
test_size = len(data_supervised) - train_size
train_data, test_data = data_supervised[0:train_size,:], data_supervised[train_size:len(data_multi),:]
print(len(train_data), len(test_data))
print(len(data_supervised) == len(train_data) + len(test_data)) 
# print(train_data)


# split into input and outputs
train_X, train_Y = train_data[:, :-1], train_data[:, -1]
test_X, test_Y = test_data[:, :-1], test_data[:, -1]
print("# shape:", train_X.shape)
print("# shape:", train_Y.shape)


from sklearn.utils import shuffle
from scipy.sparse import coo_matrix

# shuffle train set (include validation set)
trainX_sparse = coo_matrix(train_X)  # sparse matrix
train_X, trainX_sparse, train_Y = shuffle(train_X, trainX_sparse, train_Y, random_state=0)


time_steps = lag
n_lstm_neurons = [8, 16, 32, 64, 128]
# n_lstm_neurons = [8]  # for once
n_epoch = networks_factory.EPOCHS
n_batch_size = networks_factory.BATCH_SIZE


# reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], time_steps, train_X.shape[1]//time_steps))
test_X = test_X.reshape((test_X.shape[0], time_steps, test_X.shape[1]//time_steps))
print(train_X.shape, train_Y.shape)
print(test_X.shape, test_Y.shape)


for i, n_lstm_neuron in enumerate(n_lstm_neurons):
    
    print("-----------n_lstm_neuron: %d--------------" % n_lstm_neuron)
    
    s, model = networks_factory.create_lstm_model_dropout(lstm_neurons=n_lstm_neuron, hidden_layers=2, 
                                                          lenth=time_steps, dims=n_dims, n_out=1)
    model.compile(loss='mean_squared_error', optimizer='adam')
    history = model.fit(train_X, train_Y, epochs=10, batch_size=n_batch_size, validation_split=const.VALIDATION_SCALE,
                    verbose=0, callbacks=[networks_factory.ES])  # callbacks=[networks_factory.ES]
    print("# Finished Training...")
    
    # make a prediction
    train_predict = model.predict(train_X)
    test_predict = model.predict(test_X)
                                                    
    # invert predictions
    inv_trainP, inv_trainY = data_tools.inv_transform_multi(scaler, train_X, train_predict, train_Y)
    inv_testP, inv_testY = data_tools.inv_transform_multi(scaler, test_X, test_predict, test_Y)

    # calculate RMSE, MAPE, Dstat
    train_rmse = sqrt(mean_squared_error(inv_trainP, inv_trainY))
    test_rmse = sqrt(mean_squared_error(inv_testP, inv_testY))
    print('Train RMSE: %.4f, Test RMSE: %.4f' % (train_rmse, test_rmse))
    train_mape = data_metrics.MAPE(inv_trainP, inv_trainY)
    test_mape = data_metrics.MAPE(inv_testP, inv_testY)
    print('Train MAPE: %.4f, Test MAPE: %.4f' % (train_mape, test_mape))
    train_ds = data_metrics.Dstat(inv_trainP, inv_trainY)
    test_ds = data_metrics.Dstat(inv_testP, inv_testY)
    print('Train Dstat: %.4f, Test Dstat: %.4f' % (train_ds, test_ds))
    
print("# All Done!")

五、论文展示

在这里插入图片描述

六、项目总结

通过本项目,我们成功开发了一套基于Hadoop大数据技术的农产品数据分析可视化系统,为农业领域引入了前所未有的智能化和高效性。该系统不仅实现了对庞大农产品数据的高效处理和深入分析,还将数据结果以直观的图形界面呈现,使得农业从业者可以轻松获取、理解和利用海量数据。系统的应用为农产品市场的决策制定提供了有力支持,促进了农业产业链的升级和优化。在项目过程中,我们团队充分发挥了团结协作的精神,克服了各种挑战,提高了系统的稳定性和性能。总的来看,该项目不仅实现了技术上的突破,更为农业现代化探索了一条创新之路,为我国农业的可持续发展提供了有力支撑,具有广泛的推广和应用前景。

大家可以帮忙点赞、收藏、关注、评论啦 👇🏻👇🏻👇🏻

  • 1
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
基于Hadoop出租车轨迹数据分析可视化系统与设计是一个用于对出租车轨迹数据进行大规模分析和可视化展示的系统。该系统利用Hadoop框架的并行计算能力和分布式存储,可以高效地处理大量的出租车轨迹数据。 在系统设计方面,首先需要搭建一个Hadoop集群,将大量的出租车轨迹数据存储在分布式文件系统中,如HDFS。然后,设计一套数据处理流程,利用Hadoop的MapReduce任务来并行处理数据。对于出租车轨迹数据的分析需求,可以设计一系列的Map和Reduce操作,如数据清洗、轨迹聚类、轨迹分析等。这些操作可以根据需求灵活组合,并行执行,以提高数据处理效率。 同时,该系统还应该设计一个可视化界面,支持用户对分析结果进行直观展示。通过选择不同的可视化图表、配置参数等,用户可以根据自己的需求进行数据展示和分析。 系统设计上还需要考虑到性能优化的问题。例如,可以采用数据压缩、分区、索引等技术,提高数据处理和存储的效率。此外,还可以引入其他技术如Spark、Hive等,进一步优化系统性能。 总结来说,基于Hadoop的出租车轨迹数据分析可视化系统是一个持续迭代的过程。在设计过程中,需要考虑到大规模数据处理、高性能和可视化展示等需求,通过合理的系统架构和算法设计,提高数据处理效率和用户体验。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值