【计算机专业选题推荐】基于hadoop大数据的农产品数据分析可视化系统

本文介绍了如何利用Hadoop等大数据技术开发一款系统,用于处理和分析农业领域的海量数据,通过数据挖掘洞察市场趋势,提供可视化界面以支持决策。项目展示了从开发环境到代码实现,以及其在农业现代化中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

精彩专栏推荐订阅:在下方主页👇🏻👇🏻👇🏻👇🏻
💖🔥作者主页计算机毕设木哥🔥 💖

一、项目介绍

在当今数字化时代,农业领域面临着庞大的数据挑战,但同时也意识到大数据分析的巨大潜力。针对这一问题,《基于Hadoop大数据的农产品数据分析可视化系统》的开发具有重要的背景意义和价值。该系统利用Hadoop技术处理农产品数据,实现了海量数据的高效存储和快速计算。通过数据挖掘和分析,系统能够深入了解农产品市场的趋势、消费者需求和供应链动态。更为重要的是,该系统融合了先进的可视化技术,将复杂的数据转化为直观的图表和图形,为农业从业者提供了直观、易懂的数据展示,帮助他们做出更明智的决策。该项目的意义不仅仅在于提高农业生产的效率和质量,更在于推动农产品市场的健康发展,帮助农民获得更好的收入。同时,通过深入分析农产品数据,我们能够为农业领域的科研和政策制定提供宝贵的参考意见,推动农业现代化进程。基于Hadoop大数据的农产品数据分析可视化系统的开发将为农业领域带来革命性的变化,促使农业更加智能、高效、可持续发展,助力农业迈向数字化时代的新高度。

二、开发环境

  • 大数据技术:Hadoop、Spark、Hive
  • 开发技术:Python、Django框架、Vue、Echarts
  • 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

三、系统展示

页面展示:
在这里插入图片描述

四、代码展示

import sys 
sys.path.append(r'F:\workplace\Python\ml\LSTM-Agricultural-Products-Prices\Time-Series-Prediction-with-LSTM/')  
from utils import eemd_tools, data_tools, networks_factory, data_metrics
from utils.constants import const


# fix random seed for reproducibility
np.random.seed(7)


data_multi = np.load(const.PROJECT_DIR + "data/eemd/apple/data_multi.npy")
print("# shape", data_multi.shape)  # not .shape()
# print(data_multi)
n_dims = data_multi.shape[1]  # magic number !
print("# dims: ", n_dims)


# normalize features
scaler = data_tools.Po_MinMaxScaler
scaled = scaler.fit_transform(data_multi)

output = 1
lag = const.LOOK_BACK

reframed = data_tools.series_to_supervised(scaled, lag, output)
# drop columns we don't want to predict
index_drop = [-j-1 for j in range(data_multi.shape[1] - 1)]
reframed.drop(reframed.columns[index_drop], axis=1, inplace=True)
data_supervised = reframed.values
print("# shape:", reframed.shape)
print(len(data_multi) == len(reframed) + lag)
# print(reframed.head(3))

# split into train and test sets
train_size = int(len(data_supervised) * const.TRAIN_SCALE)
test_size = len(data_supervised) - train_size
train_data, test_data = data_supervised[0:train_size,:], data_supervised[train_size:len(data_multi),:]
print(len(train_data), len(test_data))
print(len(data_supervised) == len(train_data) + len(test_data)) 
# print(train_data)


# split into input and outputs
train_X, train_Y = train_data[:, :-1], train_data[:, -1]
test_X, test_Y = test_data[:, :-1], test_data[:, -1]
print("# shape:", train_X.shape)
print("# shape:", train_Y.shape)


from sklearn.utils import shuffle
from scipy.sparse import coo_matrix

# shuffle train set (include validation set)
trainX_sparse = coo_matrix(train_X)  # sparse matrix
train_X, trainX_sparse, train_Y = shuffle(train_X, trainX_sparse, train_Y, random_state=0)


time_steps = lag
n_lstm_neurons = [8, 16, 32, 64, 128]
# n_lstm_neurons = [8]  # for once
n_epoch = networks_factory.EPOCHS
n_batch_size = networks_factory.BATCH_SIZE


# reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], time_steps, train_X.shape[1]//time_steps))
test_X = test_X.reshape((test_X.shape[0], time_steps, test_X.shape[1]//time_steps))
print(train_X.shape, train_Y.shape)
print(test_X.shape, test_Y.shape)


for i, n_lstm_neuron in enumerate(n_lstm_neurons):
    
    print("-----------n_lstm_neuron: %d--------------" % n_lstm_neuron)
    
    s, model = networks_factory.create_lstm_model_dropout(lstm_neurons=n_lstm_neuron, hidden_layers=2, 
                                                          lenth=time_steps, dims=n_dims, n_out=1)
    model.compile(loss='mean_squared_error', optimizer='adam')
    history = model.fit(train_X, train_Y, epochs=10, batch_size=n_batch_size, validation_split=const.VALIDATION_SCALE,
                    verbose=0, callbacks=[networks_factory.ES])  # callbacks=[networks_factory.ES]
    print("# Finished Training...")
    
    # make a prediction
    train_predict = model.predict(train_X)
    test_predict = model.predict(test_X)
                                                    
    # invert predictions
    inv_trainP, inv_trainY = data_tools.inv_transform_multi(scaler, train_X, train_predict, train_Y)
    inv_testP, inv_testY = data_tools.inv_transform_multi(scaler, test_X, test_predict, test_Y)

    # calculate RMSE, MAPE, Dstat
    train_rmse = sqrt(mean_squared_error(inv_trainP, inv_trainY))
    test_rmse = sqrt(mean_squared_error(inv_testP, inv_testY))
    print('Train RMSE: %.4f, Test RMSE: %.4f' % (train_rmse, test_rmse))
    train_mape = data_metrics.MAPE(inv_trainP, inv_trainY)
    test_mape = data_metrics.MAPE(inv_testP, inv_testY)
    print('Train MAPE: %.4f, Test MAPE: %.4f' % (train_mape, test_mape))
    train_ds = data_metrics.Dstat(inv_trainP, inv_trainY)
    test_ds = data_metrics.Dstat(inv_testP, inv_testY)
    print('Train Dstat: %.4f, Test Dstat: %.4f' % (train_ds, test_ds))
    
print("# All Done!")

五、论文展示

在这里插入图片描述

六、项目总结

通过本项目,我们成功开发了一套基于Hadoop大数据技术的农产品数据分析可视化系统,为农业领域引入了前所未有的智能化和高效性。该系统不仅实现了对庞大农产品数据的高效处理和深入分析,还将数据结果以直观的图形界面呈现,使得农业从业者可以轻松获取、理解和利用海量数据。系统的应用为农产品市场的决策制定提供了有力支持,促进了农业产业链的升级和优化。在项目过程中,我们团队充分发挥了团结协作的精神,克服了各种挑战,提高了系统的稳定性和性能。总的来看,该项目不仅实现了技术上的突破,更为农业现代化探索了一条创新之路,为我国农业的可持续发展提供了有力支撑,具有广泛的推广和应用前景。

大家可以帮忙点赞、收藏、关注、评论啦 👇🏻👇🏻👇🏻

【资源说明】 基于Hadoop实现大数据可视化分析的Web系统源码+项目说明+sql数据库.zip 1.本项目利用Hadoop处理高校无线定位大数据,有效地将位置信息应用于学生时空行为模式挖掘,建立基于精准位置信息的行为数据挖掘计算模型。 2.基于Hadoop计算平台,并实现对大数据进行可视化分析的Web系统,采用ssm+mysql技术。 3.利用一些合适的算法实现校园热点区域提取、学生异常轨迹探测、人流迁徙分析及学生时空行为相似性分析推测等功能。  4.基于学校地图API和echarts插件可视化展现。 校园热点区域提取 采用基本的K-means算法,然后在校园地图上使用热力图形式呈现 学生异常轨迹探测 采用地理接口,筛选出不在建筑物范围内的定点。 人流迁徙分析 从wifi定点数据中根据用户特性、时间特性、建筑特性,归纳出有效完整轨迹,之后采用分段轨迹聚类算法,分析校内人员轨迹迁徙状况。 在地图上使用echarts插件里的迁徙图在校园地图上动态呈现校园人群迁徙分布。 学生时空行为相似性分析推测等功能 采用基本的Word2Vec的Skip-Gram模型用于计算人员的基于时空行为的相似人群,根据人员的脱敏信息,进行分析预测。 使用该算法的主要工作就是基于WiFi定位数据构建自己的“语料库”。 为什么可以采用Word2Vec的Skip-Gram模型的原因: 解决用户时空行为相似问题 一种行为的所有用户(学号) -> 分词处理后一段语言文字 每个用户(学号)-> 每个关键词 用户之间的亲密程度 -> 关键词相近概率 可视化web端项目 特点: 1.实现了在自己指定的地图范围上使用echerts插件,实现热力图,迁徙图。 2.基于wifi定位数据,使用了K-means算法、Word2Vec算法、轨迹分段聚类算法。 3.基于真实数据的课题实践。 4.Hadoop分布式计算的应用。 【备注】 1.项目代码均经过功能验证ok,确保稳定可靠运行。欢迎下载使用体验! 2.主要针对各个计算机相关专业,包括计算机科学、信息安全、数据科学大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师、企业员工。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。在使用过程中,如有问题或建议,请及时沟通。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值