基于大数据的企业运营数据可视化分析系统

精彩专栏推荐订阅:在下方主页👇🏻👇🏻👇🏻👇🏻
💖🔥作者主页计算机毕设木哥🔥 💖

一、项目介绍

在当前全球化和信息化的背景下,企业面临着日益激烈的市场竞争,如何有效地利用大数据技术提升企业运营效率和决策水平成为了一个亟待解决的问题。《基于大数据的企业运营数据可视化分析系统》课题应运而生,旨在帮助企业更好地理解和利用海量数据,从而实现精细化管理和优化决策。课题的必要性在于,通过对企业运营数据的深入挖掘和分析,企业可以发现潜在的商业价值,提高竞争力,实现可持续发展。

然而,现有的解决方案在实际应用中存在诸多问题。例如,部分数据分析工具操作复杂,不易上手;数据可视化效果不佳,难以直观地呈现数据背后的信息;此外,现有系统往往缺乏针对性,难以满足不同行业和企业的特殊需求。这些问题进一步强调了开展本课题研究的必要性,以期提供更加高效、易用且针对性强的解决方案。

本课题的研究目标是开发一个基于大数据的企业运营数据可视化分析系统,实现对企业运营数据的高效处理、智能分析和直观展示。通过本课题的研究,我们期望能够为企业提供一个功能强大、易于使用且具有高度定制性的数据分析平台,从而帮助企业更好地应对市场挑战,实现业务增长。这一课题的研究不仅有助于推动大数据技术在企业运营领域的应用,还将为企业创新和产业升级提供有力支持,具有重要的理论和实践意义。

二、开发环境

  • 大数据技术:Hadoop、Spark、Hive
  • 开发技术:Python、Django框架、Vue、Echarts
  • 软件工具:Pycharm、DataGrip、Anaconda、VM虚拟机

三、系统展示-基于大数据的企业运营数据可视化分析系统

在这里插入图片描述

四、代码展示

import sys 
sys.path.append(r'F:\workplace\Python\ml\LSTM-Agricultural-Products-Prices\Time-Series-Prediction-with-LSTM/')  
from utils import eemd_tools, data_tools, networks_factory, data_metrics
from utils.constants import const


# fix random seed for reproducibility
np.random.seed(7)


data_multi = np.load(const.PROJECT_DIR + "data/eemd/apple/data_multi.npy")
print("# shape", data_multi.shape)  # not .shape()
# print(data_multi)
n_dims = data_multi.shape[1]  # magic number !
print("# dims: ", n_dims)


# normalize features
scaler = data_tools.Po_MinMaxScaler
scaled = scaler.fit_transform(data_multi)

output = 1
lag = const.LOOK_BACK

reframed = data_tools.series_to_supervised(scaled, lag, output)
# drop columns we don't want to predict
index_drop = [-j-1 for j in range(data_multi.shape[1] - 1)]
reframed.drop(reframed.columns[index_drop], axis=1, inplace=True)
data_supervised = reframed.values
print("# shape:", reframed.shape)
print(len(data_multi) == len(reframed) + lag)
# print(reframed.head(3))

# split into train and test sets
train_size = int(len(data_supervised) * const.TRAIN_SCALE)
test_size = len(data_supervised) - train_size
train_data, test_data = data_supervised[0:train_size,:], data_supervised[train_size:len(data_multi),:]
print(len(train_data), len(test_data))
print(len(data_supervised) == len(train_data) + len(test_data)) 
# print(train_data)


# split into input and outputs
train_X, train_Y = train_data[:, :-1], train_data[:, -1]
test_X, test_Y = test_data[:, :-1], test_data[:, -1]
print("# shape:", train_X.shape)
print("# shape:", train_Y.shape)


from sklearn.utils import shuffle
from scipy.sparse import coo_matrix

# shuffle train set (include validation set)
trainX_sparse = coo_matrix(train_X)  # sparse matrix
train_X, trainX_sparse, train_Y = shuffle(train_X, trainX_sparse, train_Y, random_state=0)


time_steps = lag
n_lstm_neurons = [8, 16, 32, 64, 128]
# n_lstm_neurons = [8]  # for once
n_epoch = networks_factory.EPOCHS
n_batch_size = networks_factory.BATCH_SIZE


# reshape input to be 3D [samples, timesteps, features]
train_X = train_X.reshape((train_X.shape[0], time_steps, train_X.shape[1]//time_steps))
test_X = test_X.reshape((test_X.shape[0], time_steps, test_X.shape[1]//time_steps))
print(train_X.shape, train_Y.shape)
print(test_X.shape, test_Y.shape)


for i, n_lstm_neuron in enumerate(n_lstm_neurons):
    
    print("-----------n_lstm_neuron: %d--------------" % n_lstm_neuron)
    
    s, model = networks_factory.create_lstm_model_dropout(lstm_neurons=n_lstm_neuron, hidden_layers=2, 
                                                          lenth=time_steps, dims=n_dims, n_out=1)
    model.compile(loss='mean_squared_error', optimizer='adam')
    history = model.fit(train_X, train_Y, epochs=10, batch_size=n_batch_size, validation_split=const.VALIDATION_SCALE,
                    verbose=0, callbacks=[networks_factory.ES])  # callbacks=[networks_factory.ES]
    print("# Finished Training...")
    
    # make a prediction
    train_predict = model.predict(train_X)
    test_predict = model.predict(test_X)
                                                    
    # invert predictions
    inv_trainP, inv_trainY = data_tools.inv_transform_multi(scaler, train_X, train_predict, train_Y)
    inv_testP, inv_testY = data_tools.inv_transform_multi(scaler, test_X, test_predict, test_Y)

    # calculate RMSE, MAPE, Dstat
    train_rmse = sqrt(mean_squared_error(inv_trainP, inv_trainY))
    test_rmse = sqrt(mean_squared_error(inv_testP, inv_testY))
    print('Train RMSE: %.4f, Test RMSE: %.4f' % (train_rmse, test_rmse))
    train_mape = data_metrics.MAPE(inv_trainP, inv_trainY)
    test_mape = data_metrics.MAPE(inv_testP, inv_testY)
    print('Train MAPE: %.4f, Test MAPE: %.4f' % (train_mape, test_mape))
    train_ds = data_metrics.Dstat(inv_trainP, inv_trainY)
    test_ds = data_metrics.Dstat(inv_testP, inv_testY)
    print('Train Dstat: %.4f, Test Dstat: %.4f' % (train_ds, test_ds))
    
print("# All Done!")

五、项目总结

本研究通过对《基于大数据的企业运营数据可视化分析系统》的深入探讨,成功地开发了一个高效、易用且具有高度定制性的企业运营数据分析平台。这一平台有效地解决了现有解决方案在操作复杂度、可视化效果和针对性方面的不足,为企业提供了一个更加智能化的数据分析工具。本研究结果表明,通过运用大数据技术,企业可以更好地理解和利用海量数据,从而实现精细化管理和优化决策,提高竞争力。展望未来,本课题研究工作仍有许多值得进一步探讨和完善的方向。首先,随着大数据技术的不断发展,我们可以继续优化算法和模型,提高数据处理和分析的效率。其次,针对不同行业和企业的特殊需求,我们可以进一步完善系统的定制化功能,使其更加贴合实际应用场景。此外,数据安全和隐私保护也是亟待关注的问题,我们需要在系统设计中充分考虑这些因素,确保数据的安全合规使用。我们也发现了一些遗留问题和需要进一步探讨的方向。例如,在数据预处理阶段,如何更有效地识别和处理缺失值、异常值等问题;在可视化展示方面,如何根据用户需求提供更加丰富和灵活的图表类型等。为解决这些问题,我们可以考虑引入先进的数据清洗技术、探索新的可视化方法,并结合实际应用场景进行持续优化。通过不断地研究和实践,我们相信这一课题将为企业运营数据可视化分析带来更多的创新和突破。

大家可以帮忙点赞、收藏、关注、评论啦 👇🏻👇🏻👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值